Crystal growth, optical spectroscopy and laser action of Tm\(^{3+}\)-doped monoclinic magnesium tungstate

LIZHEN ZHANG,1 HAIFENG LIN,1 GE ZHANG,1 XAVIER MATEOS,2,3 JOSEP M. SERRES,2 MAGDALENA AGUILÓ,2 FRANCESC DÍAZ,2 UWE GRIEBNER,3 VALENTIN PETROV,3 YICHENG WANG,3 PAVEL LOIKO,4 ELENA VILEJSHIKOVA,5 KONSTANTIN YUMASHEV,5 ZHOUBIN LIN,1,6 AND WEIDONG CHEN1,3,*

1Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, China
2Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili (URV), Campus Sescelades, c/Marcel·li Domingo, s/n., E-43007 Tarragona, Spain
3Max-Born-Institute for Nonlinear Optics and Ultrastfast Spectroscopy, 2A Max-Born-Str., D-12489 Berlin, Germany
4ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
5Center for Optical Materials and Technologies (COMT), Belarusian National Technical University, 65/17 Nezavisimosti Ave., 220013 Minsk, Belarus
6lzb@fjirsm.ac.cn
*chenweidong@fjirsm.ac.cn

Abstract: We report on the crystal growth, spectroscopic investigation and laser performance of Tm\(^{3+}\)-doped monoclinic magnesium tungstate (Tm:MgWO\(_4\)), for the first time, to the best of our knowledge. A high-quality crystal has been grown by the top seeded solution growth method. The relevant spectroscopic properties are characterized in terms of absorption, luminescence and Raman spectroscopy. Judd-Ofelt (J-O) analysis is performed to evaluate the spontaneous emission probabilities and the radiative lifetimes. The absorption, stimulated-emission and gain cross-section spectra are determined for the principal light polarizations. The first laser action in the 2 μm spectral range is demonstrated in the regime of continuous-wave operation with a maximum output power of 775 mW and a slope efficiency of 39%.

© 2017 Optical Society of America

OCIS codes: (140.3380) Laser materials, (300.0300) Spectroscopy, (140.3480) Lasers, diode-pumped.

References and links

1. Introduction

Laser gain media doped with Tm are of great interest for obtaining coherent radiation around 2 μm due to the F\(^{2}\) \rightarrow \(^{4}\)I\(_6\) transition of the Tm\(^{3+}\) ion. The emission of Tm-based lasers is "eye-safe" and it matches spectrally the strong absorption bands of such molecules as H\(_2\)O, NO\(_2\), CO\(_2\) and NH\(_2\). Already established applications of Tm lasers include medical surgery [1], remote atmospheric sensing [2] and pumping of mid-infrared optical parametric oscillators (OPOs) [3] or holmium (Ho\(^{3+}\)) based lasers [4].

Double tungstate crystals represent an important class of laser host materials and they were extensively investigated with Tm\(^{3+}\) doping in the regimes of continuous-wave (CW) operation, Q-switching, and mode-locking. The most profound examples are the ordered Tm\(^{3+}\)-doped monoclinic potassium (rare-earth) double tungstates KRE(WO\(_4\))\(_2\) where RE = Gd [5], Y [6] or...
Lu [7], and the disordered tetragonal sodium double tungstates NaRE(WO$_4$)$_2$ where RE = Gd, Y, Lu or La [8]). The title compound, magnesium tungstate (MgWO$_4$) belongs to another crystal family of monoclinic (sp. gr. P2/c) divalent metal monotungstates, having the general chemical formula MWO$_4$ where M = Mg, Mn, Ni, Cd or Zn [9,10]. Earlier investigations of MgWO$_4$ focused on its application as scintillator [11,12]. Only very recently, MgWO$_4$ attracted attention as a promising laser host for doping with transition-metal ions, e.g. Cr$^{3+}$ [13,14], and RE ions, e.g. Yb$^{3+}$ [15]. The difference in ionic radius between the divalent Mg$^{2+}$ ion and trivalent RE ions induces distortion of the crystal field, which leads to broadening of the absorption and emission spectra [16-18]. This advantage is essential for broadly tunable laser operation and the generation of ultrashort pulses in the mode-locking regime. The monoclinic MgWO$_4$ crystal is optically biaxial, thus polarization anisotropy of the spectroscopic properties of the RE dopant can be expected, leading to naturally polarized laser output. The thermal conductivity of the MgWO$_4$ host crystal measured for unknown orientation is ~8.7 W/mK or almost 3 times larger than that of double tungstate crystals [14].

Recently, we have demonstrated efficient laser operation with Yb$^{3+}$-doped MgWO$_4$ crystal [15]. Motivated by this success and the diversity of applications of 2 μm laser sources, we extended this work aiming to develop a high quality MgWO$_4$ crystal with Tm$^{3+}$ doping. In the present work, we report on the crystal growth, spectroscopy and CW laser operation of monoclinic Tm:MgWO$_4$ crystal, for the first time to the best of our knowledge.

2. Crystal growth

The Tm:MgWO$_4$ crystal was grown by the top-seeded solution growth (TSSG) method with a flux of Na$_2$WO$_4$ in a vertical tubular furnace. The ratio of MgWO$_4$:Na$_2$WO$_4$ in the melt was 5:7 (mol). The powder precursors were Na$_2$CO$_3$, MgO and WO$_3$ with analytical grade of purity, and Tm$_2$O$_3$ with a purity of 99.99%. Stoichiometric amounts of raw materials with 10 at.% Tm$_2$O$_3$ were prepared by repeated solid state reactions. The mixtures of solute and flux were placed into a platinum crucible and sintered in a resistance furnace at 970 °C for 48 h. The crystal was grown at a cooling rate of 0.5–0.8°C/day and rotation rate of 10–15 rpm. The details of the furnace and parameters of the temperature controlling program can be found elsewhere [13,15]. The bulk Tm:MgWO$_4$ crystal finally obtained had dimensions of 16×8×6 mm3, as shown in Fig. 1(a). The as-grown crystal had a yellowish coloration which originated from optical absorption in the 320–420 nm spectral range. This absorption is observed in undoped crystals as well as it is attributed to color centers [12,15].

![Fig. 1. (a) Photograph of the as-grown Tm:MgWO$_4$ boule; (b) X-ray diffraction pattern of the powdered as-grown Tm:MgWO$_4$ crystal.](image)

To confirm the symmetry of the as-grown crystal, the X-ray powder diffraction (XRD) pattern was measured at room temperature by using a desktop X-ray diffractometer (Rigaku, MiniFlex 600) equipped with Cu Kα radiation. The experiment was carried out in the $2\theta = 10$–

...
80° range with a step of 0.02° and a scan speed of 0.13°/min. Figure 1(b) shows the XRD pattern of a powdered as-grown crystal. The diffraction peaks are consistent with the standard pattern of undoped MgWO₄ (crystallographic database, powder diffraction file #27-0789 for Huanzalaite). MgWO₄ belongs to the monoclinic crystal class (point group 2/m, space group P2/c). Based on the XRD analysis, the lattice constants of Tm:MgWO₄ are \(a = 4.697\) Å, \(b = 5.678\) Å, \(c = 4.933\) Å, \(\beta = a^\prime c = 90.77°\) (\(V = 131.54\) Å³, \(Z = 2\)). They are larger than those of the undoped crystal \(a = 4.686\) Å, \(b = 5.675\) Å, \(c = 4.928\) Å, \(\beta = a^\prime c = 90.3°\) [12]). This is attributed to the different ionic radii of Tm³⁺ and Mg²⁺ (0.88 and 0.72 Å, respectively, for the VI-fold O²⁻-coordination). The calculated crystal density of Tm:MgWO₄ is 6.871 g/cm³.

The concentration of Tm³⁺ ions in the as-grown crystal was determined to be 0.89 at.%, i.e. \(1.409 \times 10^{20}\) at/cm³ by using the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. The calculated segregation coefficient of the Tm³⁺ ion is \(K_{Tm} = 0.09\).

3. Spectroscopic characterization

Monoclinic crystals are optically biaxial and their optical properties are described in the frame of the optical indicatrix with three mutually orthogonal principal axes X, Y and Z. Since the refractive indices of MgWO₄ are still unknown, following [15] we have arbitrarily chosen the Y-axis to be parallel to the crystallographic \(b\)-axis which coincides with the 2-fold symmetry axis. The other two axes of the optical indicatrix, namely X and Z, are located in the \(a\)-\(c\) plane.

The rotation of the optical indicatrix relative to the crystallographic frame is expressed by the angles \(a^\prime X = 36.4°\) and \(c^\prime Z = 37.1°\) [15]. We have studied all the spectroscopic properties of Tm³⁺ in MgWO₄ for the principal light polarizations \(E \parallel X, Y\) and \(Z\) at room-temperature (RT, 293 K).

3.1 Optical absorption

In order to evaluate the optimum pump conditions for Tm:MgWO₄ and to calculate the absorption and stimulated emission cross-sections, polarized absorption measurements were carried out in the 0.3–2.1 μm spectral range, Fig. 2(a). Tm³⁺ ions in MgWO₄ exhibit strong anisotropy of the optical absorption. The observed absorption bands are assigned to the transitions from the 3H₆ ground state of Tm³⁺ to the excited states 1G₄, 3F₂, 3H₄, 3H₅, and 3F₄.

![Fig. 2. (a) RT polarized absorption of 0.89 at.\% Tm:MgWO₄, \(a\) is the absorption coefficient; (b) RT absorption cross-section, \(\sigma_{abs}\), spectra corresponding to the 3H₆ → 3H₄ transition.](image)

The band related to the 3H₆ → 3H₄ transition is suitable for pumping of Tm:MgWO₄ with commercially available AlGaAs diode lasers emitting around 800 nm. The corresponding polarized absorption cross-sections, \(\sigma_{abs}\), are shown in Fig. 2(b); they were calculated from the measured absorption coefficient as \(\sigma_{abs} = a/N_{Tm}\). The maximum \(\sigma_{abs}\) is \(2.04 \times 10^{-20}\) cm² at 802.6 nm for light polarization \(E \parallel X\) and the full width at half maximum (FWHM) of this peak is \(\sim 14\) nm. For \(E \parallel Y\), \(\sigma_{abs} = 1.45 \times 10^{-20}\) cm² at 796.4 nm with FWHM = 31 nm and for \(E \parallel Z\), \(\sigma_{abs} = 0.34 \times 10^{-20}\) cm² at 801.8 nm with FWHM = 25 nm. The absorption linewidths of Tm:MgWO₄ around 800 nm are much broader compared to the most intensively studied Tm³⁺-
doped laser crystals, YAG and YLF, and broader than in the monoclinic double tungstates KRE(WO4)2 where RE = Gd, Y or Lu [5-7]. This relaxes the requirements for wavelength stabilization of the AlGaAs diode lasers acting as a pump source. We attribute this broadening of the spectral bands to the distortion of the crystal field symmetry when the Tm3+ ions are replacing the Mg2+ ones in the MgWO4 lattice [16-18].

The absorption spectra of Tm3+ in MgWO4 were analyzed in the frame of the standard Judd-Ofelt (J-O) theory [19,20] in order to determine the spontaneous emission probabilities. The absorption oscillator strengths were determined from the measured absorption spectra:

\[
f_{\text{exp}}(JJ') = \frac{m_e^2}{\pi e^2 N_{\text{TM}}(\lambda)^2} \Gamma(JJ'),
\]

where \(m_e\) and \(e\) are the electron mass and charge, respectively, \(c\) is the speed of light, \(\Gamma(JJ')\) is the integrated absorption coefficient within the absorption band and \((\lambda)\) is the “center of gravity” of the absorption band. The experimental absorption oscillator strengths were averaged over the principal light polarizations, \(1/3 \times (f_X + f_Y + f_Z)\). The results are shown in Table 1.

The values of \(f_{\text{exp}}\) were used to determine the J-O (intensity) parameters, \(\Omega_k, k = 2, 4, 6\). For Tm:MgWO4, they are \(\Omega_2 = 7.609, \Omega_4 = 0.841\) and \(\Omega_6 = 2.376 \times 10^{-29} \text{cm}^2\). With these parameters, the absorption oscillator strengths \(f\) were calculated, showing a good agreement with the experiment:

\[
f_{\text{calc}}(JJ') = \frac{8}{9n^2} \frac{(n^2 + 2)^2}{\Gamma(JJ')} S_{\text{calc}}(JJ') + f_{\text{MD}}(JJ'),
\]

(2a)

where \(S_{\text{calc}}(JJ') = \sum U^{(k)}(\Omega)\), where \(U^{(k)} = ((4f^0)^S \| U^k \| (4f^0)^S' L' J')^2\). (2b)

Here, \(S_{\text{calc}}\) are the line strengths, \(h\) is the Planck constant, \(n\) is the refractive index of the crystal and \(U^{(k)}\) are the squared reduced matrix elements [21]. J-O theory describes electric-dipole (ED) transitions. The contribution of magnetic-dipole (MD) transitions with \(J\–J' = 0, \pm 1\), \(f_{\text{MD}}\), was taken from the literature [22].

Table 1. Experimental and Calculated Absorption Oscillator Strengths for Tm:MgWO4 Crystal

<table>
<thead>
<tr>
<th>Transition</th>
<th>(\omega_\lambda), cm(^{-1})</th>
<th>(\mathbf{E}_\lambda)</th>
<th>(U^{(2)})</th>
<th>(U^{(4)})</th>
<th>(U^{(6)})</th>
<th>(\Gamma), cm(^{-1})nm</th>
<th>(f_{\text{exp}}\times10^6)</th>
<th>(f_{\text{calc}}\times10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\text{H}_6\rightarrow^3\text{F}_4)</td>
<td>1759</td>
<td>5584</td>
<td>0.537</td>
<td>0.726</td>
<td>0.238</td>
<td>175.2</td>
<td>4.57</td>
<td>4.60(^\text{ED})</td>
</tr>
<tr>
<td>(^3\text{H}_6\rightarrow^3\text{H}_5)</td>
<td>1196</td>
<td>8359</td>
<td>0.107</td>
<td>0.231</td>
<td>0.638</td>
<td>70.2</td>
<td>3.96</td>
<td>3.25(^\text{ED}) + 0.52(^\text{MD})</td>
</tr>
<tr>
<td>(^3\text{H}_6\rightarrow^3\text{H}_4)</td>
<td>797.5</td>
<td>12539</td>
<td>0.237</td>
<td>0.109</td>
<td>0.595</td>
<td>49.6</td>
<td>6.29</td>
<td>6.37(^\text{ED})</td>
</tr>
<tr>
<td>(^3\text{H}_6\rightarrow^3\text{F}_3)</td>
<td>689.1</td>
<td>14513</td>
<td>0</td>
<td>0.316</td>
<td>0.841</td>
<td>28.7</td>
<td>4.87</td>
<td>5.05(^\text{ED})</td>
</tr>
<tr>
<td>(^3\text{H}_6\rightarrow^1\text{G}_4)</td>
<td>480.5</td>
<td>20813</td>
<td>0.048</td>
<td>0.075</td>
<td>0.013</td>
<td>6.5</td>
<td>2.28</td>
<td>1.47(^\text{ED})</td>
</tr>
</tbody>
</table>

\(\omega_\lambda\) - “center of gravity” of the absorption band, \(\mathbf{E}_\lambda\) — the corresponding estimated energy of the multiplet barycenter, \(U^{(k)}\), \(k = 2, 4, 6\) – squared reduced matrix elements, \(\Gamma\) – integrated absorption coefficient, \(f_{\text{exp}}\) and \(f_{\text{calc}}\) – experimental and calculated absorption oscillator strengths, respectively. ED and MD stand for the electric-dipole and magnetic-dipole contributions, respectively.

3.2 Luminescence (emission and lifetime)

The photoluminescence (PL) of Tm3+ in MgWO4 was characterized in terms of emission spectra and lifetime. The normalized polarized PL spectra were measured in the 1.3–2.1 μm spectral range under excitation at 802 nm, see Fig. 3. There are two bands in the spectra which correspond to the \(^3\text{H}_4\rightarrow^3\text{F}_4\) and \(^3\text{F}_4\rightarrow^3\text{H}_6\) transitions, respectively. Note that the PL spectra also exhibit strong polarization anisotropy.

The probabilities of spontaneous radiative transitions were calculated from the corresponding line strengths which, in turn, were derived from the J-O parameters \(\Omega_k\) and squared reduced matrix elements \(U^{(k)}\), see Eq. (2b):
The MD contributions A_{MD} were taken from the literature [22]. On the basis of probabilities of spontaneous transitions for the separate emission channels $J \rightarrow J'$, we have calculated the total probability, A_{tot}, the corresponding radiative lifetime of the excited-state, τ_{rad}, and the luminescence branching ratios for the emission channels, $B(JJ')$:

$$\tau_{rad} = \frac{1}{A_{tot}} \quad \text{where} \quad A_{tot} = \sum_{J'} A_{\text{calc}}(JJ'),$$

$$B(JJ') = \frac{A_{\text{calc}}(JJ')}{\sum_{J'} A_{\text{calc}}(JJ')}.$$

(4a)

(4b)

The results are summarized in Table 2. In particular, the radiative lifetime of the lowest excited-state, $\tau_{rad}(^3F_4) = 1.95 \text{ ms}$.

![Normalized RT photoluminescence spectra of Tm:MgWO₄ under 802 nm excitation for light polarizations E ‖ X, Y and Z.](image)

Table 2. Calculated Emission Probabilities for Tm³⁺ in MgWO₄

<table>
<thead>
<tr>
<th>Excited state</th>
<th>Final state</th>
<th>$\langle \lambda \rangle$, nm</th>
<th>$U^{(2)}$,</th>
<th>$U^{(4)}$,</th>
<th>$U^{(6)}$,</th>
<th>A_{IJ}, s⁻¹</th>
<th>B_{IJ}, %</th>
<th>A_{tot}, s⁻¹</th>
<th>τ_{rad}, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F_4</td>
<td>3H_6</td>
<td>1759</td>
<td>0.537</td>
<td>0.726</td>
<td>0.238</td>
<td>514.1MD</td>
<td>1</td>
<td>514.1</td>
<td>1.95</td>
</tr>
<tr>
<td>3H_6</td>
<td>3F_4</td>
<td>3740</td>
<td>0.091</td>
<td>0.128</td>
<td>0.928</td>
<td>25.1$^{ED}+1.4^{MD}$</td>
<td>3.4</td>
<td>770.0</td>
<td>1.30</td>
</tr>
<tr>
<td>3H_4</td>
<td>3F_4</td>
<td>1196</td>
<td>0.107</td>
<td>0.231</td>
<td>0.638</td>
<td>645.4$^{ED}+98.0^{MD}$</td>
<td>96.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3H_6</td>
<td>3H_4</td>
<td>2392</td>
<td>0.013</td>
<td>0.479</td>
<td>0.009</td>
<td>20.4$^{ED}+12.4^{MD}$</td>
<td>0.9</td>
<td>3817</td>
<td>0.26</td>
</tr>
<tr>
<td>3F_4</td>
<td>3H_4</td>
<td>1459</td>
<td>0.129</td>
<td>0.130</td>
<td>0.206</td>
<td>271.9$^{ED}+27.5^{MD}$</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3H_6</td>
<td>3F_4</td>
<td>797.5</td>
<td>0.237</td>
<td>0.109</td>
<td>0.595</td>
<td>3485ED</td>
<td>91.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$^3F_3+^3F_2$</td>
<td>3H_4</td>
<td>5066</td>
<td>0.082</td>
<td>0.354</td>
<td>0.285</td>
<td>9.9$^{ED}+0.3^{MD}$</td>
<td>0.2</td>
<td>5625</td>
<td>0.17</td>
</tr>
<tr>
<td>3H_6</td>
<td>3F_4</td>
<td>1625</td>
<td>0.629</td>
<td>0.346</td>
<td>0</td>
<td>823.8ED</td>
<td>14.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F_4</td>
<td>3F_4</td>
<td>1133</td>
<td>0.003</td>
<td>0.001</td>
<td>0.167</td>
<td>271.3$^{ED}+68.6^{MD}$</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3H_6</td>
<td>3F_4</td>
<td>689.0</td>
<td>0</td>
<td>0.316</td>
<td>0.850</td>
<td>4505ED</td>
<td>80.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3G_4</td>
<td>3F_4</td>
<td>1735</td>
<td>0.006</td>
<td>0.072</td>
<td>0.041</td>
<td>21.1ED</td>
<td>0.4</td>
<td>5494</td>
<td>0.18</td>
</tr>
<tr>
<td>3H_4</td>
<td>3F_4</td>
<td>1587</td>
<td>0.010</td>
<td>0.071</td>
<td>0.230</td>
<td>113.5$^{ED}+0.4^{MD}$</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3H_5</td>
<td>3H_4</td>
<td>1209</td>
<td>0.156</td>
<td>0.004</td>
<td>0.370</td>
<td>626.5$^{ED}+39.5^{MD}$</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3H_6</td>
<td>3F_4</td>
<td>803.0</td>
<td>0.073</td>
<td>0.005</td>
<td>0.536</td>
<td>1888$^{ED}+177.7^{MD}$</td>
<td>37.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F_4</td>
<td>3H_4</td>
<td>661.0</td>
<td>0.004</td>
<td>0.020</td>
<td>0.072</td>
<td>397.0$^{ED}+10.6^{MD}$</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F_4</td>
<td>3F_4</td>
<td>480.5</td>
<td>0.048</td>
<td>0.075</td>
<td>0.013</td>
<td>2216ED</td>
<td>40.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(λ) - mean wavelength of the emission band, $U^{(k)}$, $k = 2, 4, 6$ – squared reduced matrix elements, A_{IJ} – probability of radiative spontaneous transition, B_{IJ} – luminescence branching ratio, A_{tot} and τ_{rad} – total probability of radiative spontaneous transitions and the radiative lifetime of the excited state, respectively. ED and MD stand for the electric-dipole and magnetic-dipole contributions, respectively.
The stimulated emission, σ_e, cross-section spectra for the $^3F_4 \rightarrow ^3H_6$ transition of Tm$^{3+}$ in MgWO$_4$ were calculated from the measured absorption spectra by using the modified reciprocity method [23]:

$$\sigma'_e(\lambda) = \frac{1}{8\pi n^2 r_{\text{rad}}} \sum_{i=X,Y,Z} 3\sigma'_\text{abs}(\lambda) \exp(-hc/(kT\lambda)) d\lambda.$$

Here, σ'_e and $\sigma'_\text{abs} (i = X, Y \text{ or } Z)$ are the stimulated-emission and absorption cross-sections for the i-th principal light polarization, k is the Boltzmann constant, T is the temperature, r_{rad} is the radiative lifetime of the emitting state (3F_4 state of Tm$^{3+}$). The results for σ'_abs and σ'_e for Tm:MgWO$_4$ are presented in Fig. 4. The maximum σ'_e is 2.43×10^{-20} cm2 at 1877 nm for light polarization $E \parallel Y$. For $E \parallel X$, the emission band contains two local peaks at 1799.5 and 1848.5 nm with $\sigma_e \sim 1.63 \times 10^{-20}$ cm2. The maximum σ'_e for $E \parallel Z$ polarization is 0.32×10^{-20} cm2 at 1884 nm. These emission cross-sections are comparable to the monoclinic double tungstates but much higher compared to the commonly used Tm$^{3+}$-doped YAG and YLF crystals [5]. The anisotropy of the maximum stimulated emission cross-sections, $\sigma(X)$: $\sigma(Y)$: $\sigma(Z)$, amounts to $5.1:7.6:1$. Note that such a pronounced anisotropy will promote natural polarization selection and linearly polarized output from a Tm:MgWO$_4$ laser.

The luminescence lifetime τ_{num} of the 3F_4 state of Tm$^{3+}$ in MgWO$_4$ was determined by a decay measurement. The sample was powdered in order to eliminate the effect of radiation trapping. By exciting the Tm$^{3+}$ ions at 802 nm, we monitored the luminescence decay at ~1850 nm (from the 3F_4 excited state). The results are presented in Fig. 5. The decay is clearly single-exponential and the dependence was fitted by $\tau_{\text{num}} = 1.93$ ms. The luminescence lifetime of the 3F_4 state is very close to the radiative one determined from the J-O calculation. Therefore, the luminescence quantum yield $\eta_q = \tau_{\text{num}}/\tau_{\text{rad}} > 99\%$ which indicates very weak non-radiative relaxation from this state. This is a consequence of the large energy-gap to the ground-state but also indicates very good optical quality of the as-grown crystal.

Fig. 5. Decay curve of the Tm$^{3+}$ luminescence from the 3F_4 state for a 0.89 at.% Tm:MgWO$_4$ crystal: symbols – experimental data, solid line - single-exponential fit, excitation wavelength – 802 nm, emission wavelength – 1850 nm.
The laser emission range for Tm:MgWO₄ can be predicted from the corresponding gain cross-section, \(\sigma_{\text{gain}} \), spectra. Here, \(\sigma_{\text{gain}} = \beta \sigma_e - (1-\beta) \sigma_{\text{abs}} \), \(\beta = N(3\text{F}_4)/N_{\text{Tm}} \) represents the inversion ratio, i.e. the number of the Tm³⁺ ions in the excited state \(N(3\text{F}_4) \) divided by the total ion density \(N_{\text{Tm}} \). The \(\sigma_{\text{gain}} \) spectra for the \(^{1}F_4 \rightarrow ^{3}H_6 \) transition of Tm³⁺ in MgWO₄ are shown in Fig. 6 for the three principal light polarizations \(E \parallel X, Y \) and \(Z \).

![Fig. 6 (a)-(c). Gain cross-section \(\sigma_{\text{gain}} = \beta \sigma_e - (1-\beta) \sigma_{\text{abs}} \) for the \(^{1}F_4 \rightarrow ^{3}H_6 \) transition of Tm³⁺ in MgWO₄ and light polarization \(E \parallel X \) (a), \(E \parallel Y \) (b) and \(E \parallel Z \) (c), \(\beta = N(3\text{F}_4)/N_{\text{Tm}} \) is the inversion ratio.](image)

The maximum gain cross-sections correspond to light polarization \(E \parallel Y \). Thus, one may expect laser oscillation with this polarization for X-cut and Z-cut Tm:MgWO₄ crystals. For low inversion ratios (\(\beta < 0.3 \)), the local peak centered at ~2.02 \(\mu m \) dominates in the spectrum. For higher \(\beta \), one may expect a jump of the emission wavelength to ~1.88 \(\mu m \) or even a dual-wavelength operation. For high inversion levels, one may expect tuning of the laser emission in the 1.85–2.06 \(\mu m \) range (i.e., ~200 nm tunability). For Y-cut Tm:MgWO₄, the laser will most probably operate in the \(E \parallel X \) polarization. In the corresponding gain spectra, the position of the local peaks is at ~1.98 \(\mu m \) (for \(\beta < 0.2 \)) and at 1.85 \(\mu m \) (for higher \(\beta \)).

3.3 Raman spectra

Mono- and double tungstate crystals are well-known for their Raman activity. Undoped crystals are used as Raman shifters [24] for sub-ns and ps pulses while RE-doped ones are used for self-Raman conversion in Q-switched and CW lasers. Recently, Tm³⁺-doped monoclinic double tungstates were found to be very suitable for vibronic laser operation relying on electron-phonon coupling with the low-energy Raman–active vibrational modes [25,26]. From this point of view, the study of the Raman spectra of the monoclinic Tm:MgWO₄ crystal is of high interest for laser applications.

Polarized Raman spectra of Tm:MgWO₄ were measured at room temperature, see Fig. 7(a–c). Here, we use standard notations \(a(he)d \), where \(a \) and \(d \) correspond to the directions of propagation of incident and scattered light, and \(b \) and \(c \) – to their polarizations, respectively. The cases \(a = d = X, Y \) or \(Z \) are considered. The group analysis of the MgWO₄ structure predicts 36 lattice modes of which 18 even (g) vibrations are Raman-active: 8 \(A_g + 10B_g \), see Table 3. For the WO₆ octahedra, there are 6 active modes related to 6 W-O bonds: 4 \(A_g + 2B_g \). Typically, the internal vibrations of a tightly bound group of atoms have higher frequencies and can easily be assigned. An example is the scheelite structure, CaWO₄, with two sets of modes at 0-409 and 797-912 cm⁻¹ (the latter being internal). For MgWO₄, the WO₆ octahedra share two oxygen atoms and the ranges of external/internal modes may overlap. The internal modes are marked in Table 3 by asterisk, following [27,28]. The most intense mode at 916 cm⁻¹ (FWHM = 13.6 cm⁻¹) is assigned to the symmetric stretching W-O vibrations \(A_{1g} \), the modes at 812 and 709 cm⁻¹ – to the asymmetric stretching \(E_g \), and the modes at 683, 551 and 420 cm⁻¹ – to the bending (\(T_g \)) of the regular octahedron. The remaining modes are external and they are related to the interaction of the WO₆ groups with Mg atoms through the Mg-W, Mg-W-O and Mg-WOOW vibrations.
Table 3. Raman-Active Modes Observed in Tm:MgWO₄

<table>
<thead>
<tr>
<th>Mode</th>
<th>ν, cm⁻¹</th>
<th>Symmetry</th>
<th>Assignment</th>
<th>Mode</th>
<th>ν, cm⁻¹</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>916</td>
<td>A₉</td>
<td>v₁(A₁g)</td>
<td>10</td>
<td>313</td>
<td>B₉</td>
</tr>
<tr>
<td>2*</td>
<td>812</td>
<td>B₉</td>
<td>v₂(E₂g)</td>
<td>11</td>
<td>276</td>
<td>A₈</td>
</tr>
<tr>
<td>3*</td>
<td>709</td>
<td>A₈</td>
<td>v₃(T₁g)</td>
<td>12</td>
<td>262</td>
<td>B₈</td>
</tr>
<tr>
<td>4*</td>
<td>683</td>
<td>B₈</td>
<td>v₂(T₂g)</td>
<td>13</td>
<td>211</td>
<td>A₈</td>
</tr>
<tr>
<td>5*</td>
<td>551</td>
<td>A₈</td>
<td>v₃(T₂g)</td>
<td>14</td>
<td>186</td>
<td>B₈</td>
</tr>
<tr>
<td>6</td>
<td>517</td>
<td>B₉</td>
<td></td>
<td>15</td>
<td>154</td>
<td>B₉</td>
</tr>
<tr>
<td>7*</td>
<td>420</td>
<td>A₉</td>
<td>v₃(T₃g)</td>
<td>16</td>
<td>134</td>
<td>B₈</td>
</tr>
<tr>
<td>8</td>
<td>384</td>
<td>B₉</td>
<td></td>
<td>17</td>
<td>121</td>
<td>A₈</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>A₉</td>
<td></td>
<td>18</td>
<td>98</td>
<td>B₉</td>
</tr>
</tbody>
</table>

*Internal modes.

In Fig. 7(d), we compare the Raman spectrum of Tm:MgWO₄ with those of two double tungstate crystals employed for Tm³⁺ doping: monoclinic KLu(WO₄)₂ and tetragonal scheelite-like NaGd(WO₄)₂. The spectra of the monoclinic crystals are similar due to the presence of double oxygen bridge vibrations. The appearance of low- and medium-energy modes for Tm:MgWO₄ at 150-550 cm⁻¹ may provide efficient vibronic laser operation at 2.1-2.2 μm.

4. Continuous-wave laser performance

For the laser experiments, a sample from the as-grown crystal was cut for light propagation along the Z-axis with an aperture of 1.86(X)×3.96(Y) mm² and a thickness of 3.05 mm. Both X×Y crystal faces were polished to laser quality and remained uncoated. The laser crystal was mounted in a Cu-holder and Indium foil was used to provide improved thermal contact from all 4 lateral sides. The holder was water-cooled to 12°C. A hemispherical laser cavity was used. The pump mirror (PM) was antireflection (AR) coated at 0.77-1.05 μm and high reflection (HR) coated at 1.80-2.08 μm. It was located at 1 mm from the laser crystal.
Several concave output couplers (OCs) with radius of curvature of $R_{OC} = 50$ mm and transmission (T_{OC}) of 1%, 3%, 5% and 15% at the laser wavelength were employed. The total geometrical cavity length was ~49 mm. The laser crystal was pumped through the PM by a fiber-coupled laser diode (LD) at ~802 nm (fiber diameter: 200 μm, N.A. = 0.22). The unpolarized pump beam was re-imaged into the laser crystal by a lens assembly with a 1:1 imaging ratio. The pump spot size in the crystal was $w_p = 100$ μm (the beam propagation factor M^2 of the diode laser output was calculated to be 86, and the confocal parameter $2z_R$ was 1.9 mm). The single pass pump absorption of the crystal was 30%. The scheme of the Tm:MgWO$_4$ laser is shown in Fig. 8.

![Scheme of the Tm:MgWO$_4$ laser](image)

Fig. 8. Scheme of the Tm:MgWO$_4$ laser: LD – laser diode, PM – pump mirror, OC – output coupler.

The input-output characteristics and the emission spectra of the Tm:MgWO$_4$ laser are presented in Fig. 9. For all the studied OCs, the laser emission was linearly polarized ($E \parallel Y$); the polarization was naturally-selected by the anisotropy of the gain. No polarization-switching was detected. The output power dependence was clearly linear showing no detrimental influence of the thermal effects. The maximum output power was 772 mW at 2017-2029 nm (multi-peak spectrum) corresponding to a slope efficiency of $\eta = 39\%$ (with respect to the absorbed pump power), as measured with $T_{OC} = 5\%$. The laser threshold was at $P_{abs} = 0.19$ W and the optical-to-optical efficiency η_{opt} was 11\% (with respect to the incident pump power). For smaller T_{OC}, the laser performance was slightly inferior, resulting in decreased slope efficiency $\eta = 38\%$ ($T_{OC} = 3\%$) and $\eta = 37\%$ ($T_{OC} = 1\%$). For large $T_{OC} = 15\%$, the output power dropped further which is attributed to the increased upconversion losses. The laser emission spectra were weakly dependent on the output coupling, see Fig. 9(b), and the emission occurred in the 2017-2034 nm spectral range in agreement with the gain spectra for light polarization $E \parallel Y$.

![Input-output characteristics and emission spectra](image)

Fig. 9. CW Tm:MgWO$_4$ laser: (a) input-output dependences, η – slope efficiency; (b) typical laser emission spectra measured at $P_{abs} = 2.17$ W.
5. Conclusion

In conclusion, we report on the growth of monoclinic Tm:MgWO4 and its polarization-resolved spectroscopic characteristics and achieved for the first time laser operation with this new crystal. Absorption, stimulated-emission and gain cross-section spectra are obtained for the relevant transitions of the Tm\(^{3+}\) ion. Raman spectra are also measured. The Judd-Ofelt (J-O) analysis is performed to determine the spontaneous emission probabilities, luminescence branching ratios and radiative lifetimes. The luminescence of Tm\(^{3+}\) ions is characterized in terms of spectral and decay measurements. Laser operation of Tm in MgWO4 is realized in a compact cavity in the CW regime under diode-pumping.

The spectroscopic features of Tm:MgWO4 are determined by its low-symmetry structure and the distortion of the rare-earth site caused by the mismatch of the ionic radii of Mg\(^{2+}\) and Tm\(^{3+}\). This provides a substantial broadening of the absorption and emission spectral bands, as well as strong polarization-anisotropy of the transition cross-sections. The polarizations of interest in Tm:MgWO4 for reaching high pump efficiency and high gain are \(E \parallel X\) and \(E \parallel Y\). For these polarizations, Tm:MgWO4 is promising for broad tuning of the laser emission (with expected tuning range of >200 nm) and generation of ultrashort pulses at wavelengths above 2 \(\mu\)m. The broad (FWHM ~20 nm) and intense absorption band related to the \(^3H_6 \rightarrow ^3H_4\) transition relaxes the requirements for wavelength stabilization of the AlGaAs laser diodes employed for Tm:MgWO4 pumping. A relatively long lifetime (1.93 ms) of the upper laser level of Tm\(^{3+}\) in MgWO4 makes this material very promising also for generation of high pulse energies in the Q-switched operation mode. Further increase of the slope efficiency of Tm:MgWO4 lasers is possible for higher Tm doping levels by enhancing the efficiency of cross-relaxation for adjacent Tm\(^{3+}\) ions. MgWO4 has a rich Raman spectrum which may be used for extending the emission range of Tm:MgWO4 lasers to >2.1 \(\mu\)m with vibronic coupling. The codoping of MgWO4 with Tm\(^{3+}\) and Ho\(^{3+}\) ions may also offer another alternative for such long-wavelength emission.

Funding

The National Natural Science Foundation of China (No.11404332, No.61575199, No. 21427801), Key Project of Science and Technology of Fujian Province (2016H0045), the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000); the National Key Research and Development Program of China (No.2016YFB0701002), the China Scholarship Council (CSC, No.201504910418 and No. 201504910629), the Instrument Project of Chinese Academy of Sciences (YZ201414), Spanish Government (MAT2016-75716-C2-1-R, MAT2013-47395-C4-4-R, TEC 2014-55948-R), Generalitat de Catalunya (2014SGR1358).

Acknowledgments

F.D. acknowledges additional support through the ICREA academia award 2010ICREA-02 for excellence in research. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654148 Laserlab-Europe and under the Marie Sklodowska-Curie grant agreement No 657630. P.L. acknowledges financial support from the Government of the Russian Federation (Grant 074-U01) through ITMO Post-Doctoral Fellowship scheme.