PRODUCCIÓ D’UN ANTICÒS MONOCLONAL ANTI GALECTINA-1

Treball de Fi de Grau

Cancer research program

Nura Lutfi Royo
Javier Capilla Luque, PhD i José Yélamos López, PhD
18 de Juny del 2018, URV
Grau de Biotecnologia
Índex
Agraïments ... 3
1. Dades del centre .. 4
2. Resum .. 5
3. Introducció ... 6
 3.1. Adenocarcinoma ductal de pàncrees (PDAC) ... 6
 3.2. Galectines ... 6
 3.2.1. Galectina-1 ... 7
 3.3. Anticòs .. 9
 3.4. Anticòs monoclonal (mAbs) .. 10
 3.4.1. Obtenció d’un anticòs monoclonal ... 12
4. Hipòtesi ... 15
5. Objectius .. 15
6. Materials i mètodes ... 16
 6.1. Genotipat ratolins Gal-14 .. 16
 6.1.1. Model muri Galectina-14 .. 16
 6.1.2. Extracció de DNA ... 16
 6.1.3. PCR .. 16
 6.2. Tractament als ratolins per a la producció d’híbridomes 17
 6.2.1. Immunització .. 17
 6.2.2. Extracció de la melsa .. 17
 6.3. Obtenció de l’híbridoma ... 18
 6.3.1. Mieloma ... 18
 6.3.2. Fusió .. 18
 6.4. ELISA .. 19
 6.5. Clonació i expansió dels híbridomes ... 20
 6.6. Isotip .. 20
 6.7. Estudi funcional dels anticossos .. 20
 6.7.1. Extracció del timus ... 21
 6.7.2. Cultiu de timòcits en diferents condicions .. 21
 6.7.3. Marcatge amb DAPI .. 22
 6.8. Anàlisi de les mostres ... 22
 6.8.1. Citòmetre ... 22
 6.8.2. FACS DIVA .. 23
6.8.3. Estadística...23

7. Resultats...24
 7.1. PCR ..24
 7.2. ELISA ..24
 7.3. Isotip..29
 7.4. Estudi funcional dels anticossos.................................30

8. Conclusions..41

9. Problemàtica..41

10. Futurs plans de treball..41

11. Bibliografia..42
Agraïments

Principalment m’agradaria agrair al Rubén Olivera per ser el nexe entre l’Institut Hospital del Mar d’Investigacions Mèdiques i jo, sense la seva ajuda no hagués tingut la gran oportunitat de formar part d’aquest gran complex científic i li estaré eternament agràida.

Agrair sobretot al Dr José Yélamos, per la confiança dipositada durant la meva estada i per la seva gran atenció. Mai saps com serà el teu primer responsable científic i se’ns dubte, he tingut un gran referent.

Agrair a la Coral Ampurdanés per la paciència i la voluntat per explicar les coses amb mesura i molta cura. Per rebre’m sempre amb un somriure i estar disposada a resoldre qualsevol dubte que se’n plantejava, dia si dia també.

M’agradaria agrair a la Lucia Moreno i a al Miguel Galindo per ensenyar-me noves tècniques i donar-me l’oportunitat d’aprendre al seu costat.

A la Gemma Torres, a l’Enric Verger i a la Clara Ribas per portar somriures i bon ambient per dinar.

Al Javier Capilla per estar sempre a punt per donar consells i suggeriments, per guiar-me i fer-me enamorar del món de la immunologia que si tot va bé, m’acompanyarà durant la meva carrera científica.

Finalment vull agrair a la meva família la constància i paciència que han tingut durant aquests darrers anys, durs, amb nervis i nous camins.

I a la Jordina Domènech per ser-hi sempre, per ser salvavides i paracaigudes.
1. Dades del centre
El treball que s’exposa a continuació s’ha realitzat a l’Institut de l’Hospital del Mar d’Investigacions Mèdiques (IMIM) al programa de recerca relacionat en càncer. L’IMIM es troba dins del complex del Parc de Recerca Biomèdica de Barcelona on es comparteix edifici amb altres grups d’investigació tals com, la Universitat Pompeu Fabra (UPF), el Centre de Regulació Genòmica (CRG) i l’European Molecular Biology Laboratory (EMBL), entre d’altres. L’IMIM consta d’una plantillas-cents professionals, dels que cent-dinou són investigadors i investigadores principals que es distribueixen en seixanta grups de recerca, integrats en cinc dels programes principals que estructuren la recerca de l’IMIM.
El grup de recerca el qual m’ha donat l’oportunitat de dur a terme aquest projecte és el del Dr. José Yélamos el qual investiga, entre altres projectes, les funcions de PARP en ambients tumorals. El meu projecte és una col·laboració amb el grup de recerca de la Dra. Pilar Navarro que treballa amb mecanismes de la tumorigènesis i progressió tumoral.
2. Resum

En aquest treball s’exposa el procés d’obtenció d’un anticòs monoclonal anti Galectina-1 humana mitjançant la immunització amb Galectina-1 humana d’un ratolí *knockout* en Galectina-1. El rosegador immunitzat produirà anticossos anti Galectina-1 amb capacitat bloquejadora de les funcions biològiques que produeix la proteïna en un microambient tumoral, tals com la inducció de l’apoptosi dels timòcits i un augment de la vascularització del tumor per tal de que es pugui nodrir i, per tant, créixer. El procés d’obtenció d’un anticòs monoclonal és llarg, i per tant, en aquest treball s’exposarà l’etapa on s’han dut a terme tests ELISA per veure l’especificitat de l’anticòs front a la proteïna d’interès i estudis funcionals *in vitro* per provar l’eficàcia de l’anticòs per bloquejar la Galectina-1, tant humana com murina. Tot i haver participat en l’etapa final de la producció de l’anticòs, he pogut assistir en la immunització del ratolí i la fusió entre les cèl·lules de la melsa i el mieloma, d’un segon anticòs que està duent a terme el grup, un anticòs anti-PARP2.

D’aquesta manera, tots els resultats que s’exposaran a continuació són fruit d’un treball previ que ha realitzat el grup amb col·laboració amb l’equip d’investigadors de la Dr Pilar Navarro.

Paraules clau: Galectina-1, anticòs monoclonal, timòcits.
3. **Introducció**

3.1. **Adenocarcinoma ductal de pàncrees (PDAC)**

L’adenocarcinoma ductal de pàncrees (PDAC) és un tipus de càncer de pàncrees que es forma en els conductes glandulars del pàncrees i és una de les formes amb pitjor pronòstic de càncer, amb un rati molt ínfim de supervivència com a conseqüència d’un diagnòstic tardà i la resistència a les teràpies estàndard. Actualment es coneix com la tercera causa de mort per càncer, però les prediccions apunten que es posicionarà en segon lloc l’any 2030 [1], [2]. A nivell histopatològic, PDAC és caracteritzat per la presència d’una desmolpàstia estromal molt abundant i una resposta fibroinflamatòria composta per una matriss extracel·lular (ECM), fibroblasts/cèl·lules pancreàtiques, cèl·lules immunitàries i cèl·lules endotelials. Estudis recents han demostrat que el PDAC associat a la desmoplastia juga un paper crucial en promoure el creixement i la progressió del tumor, i també contribueix a la resistència a la quimioteràpia. Per aquestes raons apunta a ser una bona direcció per a futures investigacions per tal d’augmentar els ratis de supervivència en els pacients. [3]–[5]

PDAC representa un paradigm en la relació tumor-estroma ja que els components estromals representen més del 90% del volum total del tumor i es troben en cooperació induïda per les cèl·lules tumorals per tal afavorir la progressió d’aquest. [6]

Actualment, s’ha identificat que la Galectina-1 es troba sobreexpressada en tumors[7], [8], incloent-hi el PDAC on s’ha observat una correlació positiva en la presència de Galectina-1 i la fase en la qual es troba el tumor. Aquesta proteïna pot interactuar amb carbohidrats localitzats a la superfície cel·lular o a la ECM, regulant l’adhesió cèl·lula-cèl·lula o cèl·lula-ECM. La seva sobreexpressió en PDAC va ser identificada majoritàriament en cèl·lules estromals, encara que la rellevància biològica i/o patològica d’aquest descobriment encara no s’ha descobert.[9]

3.2. **Galectines**

Les Galectines són proteïnes basals d’unió a les β-galactosidasa caracteritzades per la seva interacció amb les fraccions de polilactosamina que es troben localitzades de forma basal en glicoproteïnes o glicolípids. La família de galectines es troba definida per la seqüència consens d’aminoàcids i per la presència de com a mínim un domini de reconeixement de carbohidrats (CRD) que és el responsable de la unió amb els N i O-glicans. Gràcies a aquestes interaccions les galectines participen en diferents funcions
biològiques tals com el control del cicle cel·lular, la migració, l’adhesió a la matriu cel·lular i la senyalització transmembrana. La seva expressió i secreció es troba ben regulada i s’expressa en diferents moments durant el desenvolupament. En concentracions elevades les galectines promouen l’apoptosi dels timòcits mitjançant la transducció de senyals de mort a través de la seva membrana, la vascularització en ambients tumorals i impedeixen la infiltració de cèl·lules immunitàries a la membrana del tumor. [7], [10]

3.2.1. Galectina-1

La Galectina-1 (Gal-1) és una proteïna homodimèrica no covalent amb un pes molecular de 14.5 KDa, membre de la família de les β-galactosidasa que s’uneixen a lectines amb una afinitat específica per els motius N-acetillactosamina. El dímer que forma la proteïna es troba unit per interaccions hidrofòbiques entre la interface monomèrica i la capa hidrofòbica. [11].

Estudis realitzats mitjançant el model de ratolí Ela-KrasG12Vp53−/− que desenvolupa tumors ductals tipus adenocarcinoma i amb el seu creuament amb línies de ratolins defectius en Gal-1 (Lgals1−/−) es van obtindre línies de rosegadors productors de tumors ductals amb i sense presència de Galectina-1. L’estudi va observar un major rati de supervivència (22,3%) en els ratolins deficientes de Gal-1, on aquestes evidències van ser més significatives quan van ser comparades amb els supervivents a llarg o curt termini. Més concretament, el 10% dels ratolins Ela-KrasG12Vp53−/− Lgals1−/− morien abans dels tres mesos i només un 20% sobreivia més de sis, per altra banda, en ratolins Ela-KrasG12Vp53−/− Lgals1+/+ la població de ratolins que morien en menys de tres mesos disminuïa (47% menys), canviant així a només un 5,3% de població amb menys de tres mesos

![Figura 1. Estructura dimèrica de la Galectina-1. Galectina-1 (blau) amb lligam per lactosa (vermell) en els dominis de reconeixement de carbohidrats. Lopez-Lucendo, et al. 2004.](image-url)
mesos i obtenint un 36,8% de ratolins amb una vida major a sis mesos (increment del 84%). La representació d’aquests valors es poden observar a la figura 2. Aquesta correlació també es va observar en la presència de metàstasi al fetge on, els ratolins knockout en Gal-1, presentaven una disminució en la presència de metàstasis en comparació amb els Lgal+/+. Tal i com s’ha esmentat anteriorment, els nivells elevats de Gal-1 a l’estroma i el rol en la regulació de les funcions immunològiques, porten a examinar amb profunditat l’impacte de la inactivació de la Gal-1 en ambients tumorals. Primerament, es van analitzar els tumors dels ratolins amb quatre mesos de vida \((Ela-Kras^{G12V}p53^-/Lgal1+/+ i Ela-Kras^{G12V}p53^-/Lgal1^-) \), el ratolí deficient en Gal-1 mostrava un tumor molt més reduït. Tanmateix, els tumors desenvolupats per Lgal1⁻/⁻ mostraven una disminució de la vascularització tumoral i una activació estromal deficient, fet que podria participar en la disminució del volum del tumor.

Amb aquestes evidències, es va considerar també que la disminució del volum del tumor en els ratolins deficientes en Gal-1 podria estar associat a una alteració de la resposta de les cèl·lules del sistema immune. D’aquesta manera, es va analitzar la infiltració de cèl·lules immunològiques en els tumors dels ratolins Lgal1+/+ i Lgal1⁻/⁻. Els resultats obtinguts mitjançant citometria de flux del rossegador \(\text{wildtype} \) en Gal-1 mostren una precària infiltració de cèl·lules T i una gran infiltració al tumor de cèl·lules mieloides, contràriament, els tumors provinents del ratolí knockout en Gal-1 presentaven un increment en la infiltració de les cèl·lules T (CD45⁺, CD3⁺).
Gràcies als estudis previs, s’arriba a la suposició de que Gal-1 podria promoure un microambient immnosupressor impedint la infiltració al tumor dels timòcits i facilitant la expansió de cèl·lules mieloides. [7], [8]

A concentracions fisiològiques de Gal-1 (20 mg/ml) s’ha observat un bloqueig en la infiltració de cèl·lules T al microambient tumoral així com una inducció de l’apoptosi en les subpoblacions activades de cèl·lules T. L’apoptosi de les cèl·lules T requereix la presència de Lck i kinases ZAP70, l’alliberament de seramida, la disminució del potencial de membrana mitocondrial i l’activació de les caspases. A concentracions elevades de Gal-1 (500 mg/ml) en canvi, s’ha observat que l’apoptosi de les cèl·lules T succeeix sense l’activació de les caspases ni del requeriment de l’endonucleasa G per la degradació de l’ADN. [12], [13]

Per tal de bloquejar els efectes de la Gal-1 en microamments tumorals es planteja la producció d’un anticòs monoclonal.

3.3. Anticòs

Un anticòs, també anomenat immunoglobulina (Ig), és una glicoproteïna produïda i secretada per els limfòcits B després de ser activats com a resposta a l’exposició a un immunògen. Consta d’una estructura bàsica de quatre cadenes:
- 2 cadenes llargues: cadenes pesants (H, heavy) idèntiques entre elles que contenen una regió N-terminal altament variable.
- 2 cadenes curtes: cadenes lleugeres (L, light) idèntiques entre elles que contenen una regió N-terminal altament variable.

Les quatre cadenes unides entre elles per ponts dissulfur (unió covalent entre grups tiol de residus de cisteïna) formen un monòmer d’Ig. Les cadenes tant pesades com lleugeres estan formades per repeticions de dominis globulars de 100-110 aminoàcids anomenats dominis tipus immunoglobulina. Els dominis N-terminals de les cadenes H i L (veure figura 3) son els responsables del reconeixement específic d’antígens mentre que la resta de la Ig no intervé en el reconeixement de l’antigen. Aquestes regions variables contenen tres zones hipervariables anomenades regions determinants de la complementarietat o CDR (complementary-determining regions) que són les zones que contacten amb l’epitòp de l’antigen.

A més a més, la regió constant de les cadenes pesades determina la classe o isotip d’Ig (IgA, IgG, IgM, IgD i IgE) i en conseqüència la seva funció efectora com pot ser
fagocitosi, activació del complement, desgranulació, mort cel·lular per activació de cèl·lules NK, entre d’altres. [14]

3.4. Anticòs monoclonal (mAbs)

Els anticossos monoclonals són molècules produïdes per un únic clon de cèl·lules B i és considerat una espècie pura d’anticòs amb gran especificitat per l’epítop antigènic seleccionat.

Els anticossos monoclonals estan sent molt útils com a reactius per a diagnosi, i en teràpia clínica. En l’actualitat els anticossos monoclonals formen part de tests diagnòstics d’embaràs, per valorar la compatibilitat d’antígens d’histocompatibilitat, per mesurar les concentracions sanguínies de fàrmacs i per reconèixer els antígens alliberats per certs tumors. També és possible utilitzar anticossos monoclonals in vivo per tal d’identificar o localitzar antígens tumors i possibilitar el diagnòstic precoç de tumors primaris o metastàtics. Tenen un important i creixent interès terapèutic entre els que cal destacar l’anticòs rituximab utilitzat per el tractament del limfoma no Hodgkin o l’infliximab o adalimumab per a l’artritis reumatoide, entre d’altres. Actualment hi ha un número creixent d’anticossos terapèutics aprovats i més d’una centena en procés de desenvolupament els quals s’utilitzaran en les principals àrees com el tractament del càncer o l’alleujament de trastorns artritics. Com s’exposa, els anticossos monoclonals són molt utilitzats en recerca i us clínic ja que poden ser utilitzats sols, o conjugats amb fàrmacs, toxines o substàncies radioactives específiques per l’eliminació de cèl·lules cancerígenes. [14]–[17]
Els anticossos de primera generació provenen dels ratolins i, ja que el seu ús com a teràpia clínica requereix que s’inlinen a cos humà es presenten dos problemes principals: en primer lloc, si produeixen una resposta immunogènica molt forta pot ser perillós pel pacient, i en segon lloc poden provocar una resposta anti anticòs. En aquest cas, el sistema immunitari destruiria l’anticòs terapèutic inhibint així tots els seus possibles efectes. Aquests obstacles provenen principalment de que els anticossos han sigut produïts a partir d’un ratolí i per tant el sistema immunitari del pacient el reconeix com a forà. Per tal de suprimir aquests obstacles, els anticossos es poden “humanitzar” per tal de que el sistema immunitari no l’ataqui i que siguin completament segurs per ser utilitzats com a teràpia clínica.

El primer avanç que es va dur a terme en aquesta direcció va ser la producció d’un anticòs quimèric on dues terceres parts de l’anticòs eren humanes i la resta era part murina. Aquests anticossos van ser construïts a partir de la fusió de la regió Fab murina (responsable de la unió amb l’antigen) i la regió Fc humana, per tant, l’anticòs és reconegut majoritàriament pel sistema immunitari com a humà i com a conseqüència es reduceix el risc de desenvolupar una resposta immunitària de rebuig, veure figura 4. La generació dels anticossos químèrics és possible gràcies a l’ús d’ADN recombinant i d’enginyeria genètica. Tot i que els anticossos químèrics presenten una immunogenicitat molt menor comparada als anticossos murins encara presenten parts murines que poden ser reconegudes i podrien desenvolupar una resposta anti anticòs.

Un important avanç alhora de evitar respostes contra l’anticòs terapèutic va ser el desenvolupament de anticossos humanitzats. Aquests consten de les regions CDR provinents dels ratolins i la resta de l’anticòs prové dels humans, de tal manera que el 90% de l’anticòs té naturalesa humana. Els anticossos humanitzats presenten menys immunogenicitat que els anticossos químèrics i els murins.

Actualment, és possible la producció d’anticossos 100% humans sense seqüència murina i poden ser produïts a partir de dues maneres: mitjançant tecnologies d’ADN recombinant o mitjançant ratolins transgènics (humanitzats). [18], [19]
3.4.1. Obtenció d’un anticòs monoclonal

Els primers científics que van intentar obtenir anticossos monoclonals no eren capaços de cultivar de manera satisfactòria les cèl·lules limfocitàries tipus B productores d’anticossos monoclonals, necessitaven una línia cel·lular productora d’anticossos que fos immortal, i la van observar en una pacient que patia una malaltia anomenada mieloma múltiple (cancer als limfòcits B). Georges Köhler i Cesar Milstein van realitzar una fusió entre una cèl·lula productora d’anticossos (limfòcits B) amb especificitat seleccionada i una cèl·lula cancerígena per tal de que la línia cel·lular resultant tingués una vida i una producció de l’anticòs d’interès il·limitades. Es va iniciar la tecnologia de formació d’hibridomes i la producció d’anticossos monoclonals que els va portar a guanyar el premi Nobel l’any 1984.

Actualment, la producció d’anticossos monoclonals es troba en un protocol en el qual s’han de seguir els següents passos, a la figura 5 es pot observar un esquema del procés. [20]–[22]

1. Immunització

S’immunitza l’animal, normalment un ratolí per la seva fàcil manipulació (podrien ser rates o conills, entre d’altres), amb l’antigen per tal de que el mateix organisme produeixi els anticossos específics per l’antigen. Una estratègia per generar anticossos monoclonals que reconeixin tant la proteïna d’origen humà com la d’origen muri és utilitzar, es hi ha disponibilitat, ratolins deficient en genèticament (knockout) per a la proteïna d’interès i immunitzar-lo amb la proteïna humana. Com que el ratolí no
expressa la proteïna d’interès, no és tolerant a ella i per tant, pot reaccionar produint anticossos front a la proteïna humana

2. Fusió cel·lular
Les cèl·lules que es requereixen han de tindre una vida il·limitada en cultiu, per tant s’han de fusionar amb cèl·lules del mieloma per tal de crear un híbrid immortal. S’extreu la melsa del ratolí immunitzat i es disgrega per a l’obtenció d’ una població de limfòcits B. Per tal de que la fusió es digui a terme amb èxit, s’utilitza polietilenglicol (PEG) per tal de produir disrupcions en les membranes i que les cèl·lules es puguin fusionar.

3. Selecció dels hibridomes
Després de la fusió s’han de seleccionar els híbrids (fusió entre cèl·lules formades per limfòcits B i cèl·lules de mieloma) que produeixen anticossos específics d’interès. Per fer-ho, es fan créixer en un medi HAT (*Hypoxanthine-aminopterin-tymidine médium*) que inhibeix la síntesi de DNA via aminopterina. Les cèl·lules B i els híbrids poden sobreviure en medi HAT si posseeixen la timidin kinasa que els permet sintetitzar els precursors de la DNA polimerasa del medi HAT enriquit amb timidina. Els mielomes no produeixen timidin kinasa, i per tant, no sobreviuen en el medi HAT. Per altra banda, les cèl·lules B moren amb el temps ja que tenen un número de divisions límit.

4. Screening dels productes
La població de cèl·lules que sobreviuen és heterogènia, en els quals hi trobem múltiples clons específics per l’antigen i clons que produeixen anticossos sense cap tipus d’especificitat.
Cada clon potencial s’ha d’analitzar mitjançant el seu sobrenedant amb tècniques com el test ELISA, tècnica per la que els anticossos s’uneixen de manera específica als antígens que es fixen al fons de la placa. Els anticossos que s’uneixen amb més especificitat donen més senyal (mesurada en coloració) quan es dur a terme el rebel·lat de la prova.

5. Clonació i propagació
L’hibridoma que produeix l’anticòs específic és aïllat i expandit per produir una concentració més elevada d’aquest. Tanmateix, l’anticòs s’ha de purificar reduint progressivament el contingut de medi HAT i substituint-lo per un medi no selectiu (p.e.,RPMI).
6. Caracterització i emmagatzematge

Els híbridomes seleccionats s’han de criopreservar en diferents *stocks* per preservar-los.

Si l’anticòs que es produeix és per ús clinic, s’ha de provar prèviament en ratolins (o altres animals amb la patologia d’interès) per tal de comprovar la seva eficàcia. Per aquesta raó l’anticòs d’interès ha de tindre reactivitat creuada, és a dir, que reconegui l’antígen tant en humans com en ratolins perquè sinó les proves pre-clínicas amb els rosegadors no s’obtindrien els resultats esperats.

Figura 5. Esquema representatiu per a la producció d’anticossos monoclonals (mAbs) a partir de l’introducció d’un antígen a un ratolí.
4. Hipòtesi
La Galectina-1 s’ha relacionat amb la progressió tumoral a través dels efectes que produeix al sistema immunitari afectant negativament la població de timòcits, incrementant l’angiogènesi, la migració cel·lular, l’adhesió de les cèl·lules tumorals i modificant la resposta cel·lular a la quimioteràpia. Tanmateix s’ha observat que en un microambient tumoral la presència de Galectina-1 disminueix la infiltració al tumor de cèl·lules immunològiques.

El bloqueig de Galectina-1 mitjançant l’ús d’anticossos monoclonals anti Galectina-1 en cèl·lules tumorals podria permetre el desenvolupament de respostes immunitàries més eficaces contra les cèl·lules tumorals incrementant la infiltració de cèl·lules immunes al focus tumoral. Per tant, la inhibició de la Galectina-1 provocaria una major eficàcia antitumoral per part del sistema immunitari i una major resposta a la quimioteràpia gràcies a infiltració del fàrmac al focus tumoral.

5. Objectius
1. Obtenir un anticòs monoclonal amb capacitat bloquejadora contra la Galectina-1 tant humana com murina.
2. Conèixer l’isotip de l’anticòs monoclonal produït.
6. Materials i mètodes

6.1. Genotipat ratolins Gal-1/^{-/-}

6.1.1. Model murí Galectina-1/^{-/-}

Es van utilitzar ratolins C57BL/6J i van ser criats i cuidats sota condicions específiques lliures de patògens i manipulats per personal especialitzat a l’estabulari (Animal House Facility of Barcelona Biomedical Research Park (PRBB)). Els estudis realitzats van ser aprovats pel comitè de cura de l’animalari i tots els procediments que es van dur a terme amb l’animal viu els va dur a terme el Dr. Yélamos.

6.1.2. Extracció de DNA

Els ratolins amb tres setmanes de vida van ser etiquetats individualment per perforació a l’orella, s’utilitzà el rosegador 180008616 1R (ID del ratolí), 1R es refereix a la marca identificadora que tenia a l’orella dreta (one right). Es va obtenir el tros terminal de les cues (0,5-1 cm) i es va conservar a −20ºC fins a la seva utilització. Primerament es va dur a terme una digestió de les cues amb 400 µl de buffer de Lisis i proteïnasa K (Stock a 20 mg/ml) a 55ºC durant tota la nit. Transcorregut el temps de la digestió de les cues, es van homogeneïtzar i centrifugar (8 minuts a 1400 rpm), recol·lectant el sobrenedant i barrejant-lo amb 350 µl d’isopropanol on mitjançant lleugeresses decantacions es formà un precipitat. Es van centrifugar novament les mostres per tal d’obtenir el sediment i s’hi va introduir etanol per eliminar possibles restes. Finalment, es va resuspendre l’ADN amb TE (Tris. EDTA buffer)¹. [23]

6.1.3. PCR

Les mostres amb el l’ADN resuspès amb TE es van amplificar mitjançant una reacció de PCR². El ratolí utilitzat era deficient en la proteïna Galectina-1, de tal manera que es realitzà una reacció adaptada en aquestes condicions que s’observen a la figura 6. S’utilitzà el termociclador MyCycler™ BioRad® (Hercules, CA) i els reactius utilitzats eren de la casa Sigma-Aldrich® (St. Louis, MO), la seqüència dels primers es pot observar a les figures complementàries de l’Annex. La lectura del gel es va realitzar mitjançant el transil-luminador BioRad® GelDoc™XR amb el programa Image Lab™.

¹ Veure protocol complert a l’Annex 1.1.
² Veure protocol complert a l’Annex 1.2
6.2. Tractament als ratolins per a la producció d’hibridomes

6.2.1. Immunització

Els ratolins Galectina-1+/– van ser immunitzats mitjançant tres injeccions intraperitoneals cada 15 dies amb 50 µg de Galectina-1 humana. La primera injecció es realitzà amb l’adjuvant complet de Freund’s (Sigma-Aldrich® (St. Louis, MO)) i les dues següents amb l’adjuvant incomplet Freund’s (Sigma-Aldrich® (St. Louis, MO)), seguides d’una injecció intrasplènica de proteïna sense adjuvant. Les immunitzacions es van realitzar amb un total de 300 µl de volum.

6.2.2. Extracció de la melsa

Els ratolins van ser sacrificats tres dies després de la injecció intrasplènica mitjançant la cambra de CO₂ i se’ls va extreure la melsa en condicions asèptiques. La melsa es situà sobre un separador cel·lular estèril de 100 µm situat en una placa de Petri amb 5 ml de medi RMPI 1640 i es disgregà amb l’èmbol d’una xeringa. La mostra va ser centrifugada a 500 rpm durant 5 minuts i el precipitat es va resuspendre en 1 ml de clorur amònic 0,144 M en Tris 17 mM pH=7,2, amb el qual es van lliurar els hematies. L’osmolaritat de la solució es va ser restablerta afegint 9 ml de PBS. Per eliminar els agregats cel·lulars productius per la lisis, la melsa es va filtrar amb una pipeta de vidre amb filtre de nylon i es van dur a terme 5 rentats amb PBS amb la finalitat d’arrossegar el major número de proteïnes en solució que poguessin interferir posteriorment en la fusió amb el mieloma. En aquest procés es van obtenir aproximadament un total de 2x10⁸ esplenòcits per melsa processada.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Components de la reacció</th>
<th>Condicions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galectina-1</td>
<td>H20</td>
<td>94 ºC 2 min</td>
</tr>
<tr>
<td></td>
<td>10X transcription</td>
<td>94 ºC 45 sec</td>
</tr>
<tr>
<td></td>
<td>MgCl₂ (50µM stock)</td>
<td>60ºC 1 min</td>
</tr>
<tr>
<td></td>
<td>DMSO (100% stock)</td>
<td>72ºC 1 min</td>
</tr>
<tr>
<td></td>
<td>Taq (5U/µl stock)</td>
<td>72ºC 10 min</td>
</tr>
<tr>
<td></td>
<td>3’ Neo (10 µM stock)</td>
<td>15ºC forever</td>
</tr>
<tr>
<td></td>
<td>3’ Gall (10 µM stock)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5’ Gall (10 µM stock)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNA (500-1000 ng/µl)</td>
<td></td>
</tr>
</tbody>
</table>

Figura 6. Condicions de PCR per el genotipat del ratolí Galectina-1+/–.
6.3. Obtenció de l’hibridoma

L’hibridoma s’obté mitjançant una fusió entre les cèl·lules obtingudes de la melsa (esplenòcits) i una línia de cèl·lules immortals (mieloma) per tal de que l’hibridoma resultant tingui una vida il·limitada.

6.3.1. Mieloma

Per a la generació d’hibridomes es va utilitzar la línia de mieloma NS1 que no secreta immunoglobulines. Les cèl·lules NS1 van ser descongelades una setmana abans de la fusió i es van cultivar en medi RPMI 1640 suplementat amb 10% de SBF (sèrum fetal boví), penicil·lina 50 u/ml, estreptomicina 50 µg/ml i L-glutamina 2 mM. Per a dur a terme la fusió, es van seleccionar els cultius de NS1 en creixement logarítmic i amb una viabilitat no inferior al 95%. Abans de realitzar la fusió, es van dur a terme 4-5 rentats amb PBS per eliminar les possibles proteïnes sèriques.

6.3.2. Fusió

La fusió entre les cèl·lules NS1 i els esplenòcits murins (proporció 1:2,5) es realitzà a 37ºC utilitzant PEG en solució 50% (Sigma-Aldrich® (St. Louis, MO)), i s’hi va afegir 1 ml de PEG a la mostra durant un minut, gota a gota, amb l’ajuda d’une pipeta de vidre estèril. Durant el segon minut s’agità en cercles amb la punta de la pipeta i durant el tercer minut s’agità suauament la suspensió cel·lular amb l’ajuda de la pipeta. Seguidament, es van afegir 10 ml de medi RPMI sense additius durant 10 minuts, gota a gota, agitant contínuament, de tal manera que caiguéren 0,5 ml cada 30 segons. A continuació, es van afegir 20 ml més de medi RPMI durant 5 minuts seguint el mateix procediment, però deixant caure 2 ml cada 30 segons. La suspensió resultant es centrifugà a 200 rpm durant 8 minuts i després de descartar el sobrenadant, s’afegiren 10 ml de medi RPMI suplementat amb 20% de SBF (sèrum fetal boví) penicil·lina 50u/ml, estreptomicina 50 µg/ml, L-glutamina 4 mM, aminoàcids no essencials (Sigma-Aldrich® (St. Louis, MO)) a l’1%, piruvat sòdic (Sigma-Aldrich® (St. Louis, MO)) 1 mM i HEPES (Sigma-Aldrich® (St. Louis, MO)) 50 mM. Immediatament, les cèl·lules les quals se’ls hi havia dut a terme la fusió (podien estar fusionades o no) es van sembrar en microplaques de 96 pouets de fons pla, de manera que en cada pouet es va introduir un volum de 100 µl a una concentració de 10^6 cèl·lules/ml i s’incubaren a 37ºC i 5% de CO$_2$.

Al dia següent, a cada pouet se li va afegir 100 µl de medi selectiu HAT 2x de manera que la concentració final de HAT en cada pouet sigui de 1x. En el medi selectiu HAT,
com bé s’ha esmentat a la introducció, només permet el creixement de les cèl·lules híbrides de limfòcits B i cèl·lules de mieloma. Es van seleccionar aquells pouets que presentaven creixement cel·lular i es va realitzar un test ELISA amb el sobrenedant de cada pouet per tal de detectar la producció de IgG anti-Galectina-1. Posteriorment, el medi HAT es va canviar per medi HT i més endavant, es canviarà el medi HT per medi RPMI suplementat amb SBF al 10%, L-glutamina i PBS.

6.4. ELISA
El test ELISA (Enzyme-Linked ImmunoSorbent Assay) és una tècnica bioquímica que es basa en l’ús d’antigens o anticossos marcats amb un enzim, de manera que els conjugats resultants tinguin activitat tant immunòloga com enzimàtica. Mitjançant l’addicó d’un substrat específic que interaccionarà amb l’enzim i produirà un color visible.[24] En aquest projecte, es realitzà un test ELISA per tal de detectar si els hibridomes han produït IgG anti Gal-1. Primerament els assajos de selecció es van dur a terme amb Gal-1 murina però també es va testar la especificitat amb Gal-1 humana per tal d’obtenir un anticòs amb reactivitat cruada (que reconegués Gal-1 murina i humana). La reactivitat cruada ens permetria realitzar estudis pre-clírics en ratolins amb PDAC. Primerament, es van fixar amb Tris 0,1M pH=8,0, 100 µl de proteïna pura (2,5 µg/ml) en cada pouet, on després es va bloquejar amb PBS+5% de llet en pols i després d’una incubació s’hi van afegir les aliqüotes de 100 µl de sobrenedant que es trobava en cultiu amb medi HT a 37ºC i a 5% de CO₂. La placa es va incubar over night a 4ºC per tal de que es duguin a terme les unions específiques. L’endemà, després de realitzar els rentats amb PBS + 1% Tween 20 es va afegir en cada pouet 100 µl d’anticòs secundari anti-mouse IgG marcat amb HRP (1/250 en PBS + 5% de llet en pols). Finalment, per a revelar la coloració del test es va introduir 100 µl de TMB \textit{Líquid Substrate System for ELISA} (Sigma-Aldrich® (St. Louis, MO), T0440) que reacciona amb HRP i dóna coloració. Transcorreguts 20-25 minuts es pot llegir la placa a l’espectrofotòmetre (Infinite M200, TECAN) 655nm3.

3 Veure protocol sencer a l’Annex 1.4
6.5. Clonació i expansió dels hibridomes

Els hibridomes els quals els seus sobredendants van donar positiu per test ELISA, es a dir, que secretaven anticossos anti Gal-1 murina (la selecció per test ELISA es va dur a terme amb Gal-1 murina), es van passar en microplaques de 96 pouets de fons pla mitjançant Cell Sorting (FACSAria III (BD)) obtenant així un únic hibridoma per pouet. Aquesta tècnica consisteix en inocular una única cèl·lula en cada pouet per tal de els anticossos que secretin les cèl·lules provinguin d’un únic clon. Posteriorment, es van seleccionar els pouets els quals hi havia creixement i el sobredendant es va tornar a testar per test ELISA. Aquest procediment es repeteix fins que s’obtenen clons únics.

6.6. Isotip

Existeixen cinc classes principals de cadenes pesades, conegudes com a isotips, con segons el tipus de cadena pesada que tingui l’anticòs es determinarà la seva classe: IgM (μ), IgG (γ), IgA (α), IgD (δ) o IgE (ε). Gràcies a l’observació de diferències en les seqüències de les cadenes pesades α i γ es va realitzar una subclassificació addicional. En l’èsser humà hi ha dos subisotips de cadenes pesades α – α1 i α2 (i per conseqüència dos subclasses, IgA1 i IgA2) – i quatre subisotips de cadenes pesades γ: γ1, γ2, γ3 i γ4 (i per conseqüència quatre subclasses, IgG1, IgG2, IgG3 i IgG4. En ratolins existeixen quatre subtipus γ1, γ2a, γ2b i γ3. [14]

El procés per tal de conèixer quin isotip té l’anticòs que es va produir és semblant a la realització d’un test ELISA, amb la diferència que a la placa es van fixar diferents isotips IgG1, IgG2a, IgG2b i IgG3 (Purified anti-mouse BD Pharmingen™), l’anticòs secundari era anti isotip (IgG1, IgG2a, IgG2b i IgG3)-biotina (Biotin anti-mouse BD Pharmingen™) i finalment s’utilitza la streptavidina per la seva afinitat per la biotina (Streptavidin 1:20000, BD Pharmingen™) marcat amb HRP com a enzima per utilitzar el substrat i donar senyal (coloració) al introduir-hi TMB Líquid Substrate System for ELISA (Sigma-Aldrich® (St. Louis, MO), T0440).

6.7. Estudi funcional dels anticossos

L’objectiu principal de l’estudi funcional dels anticossos és provar l’eficàcia de l’anticòs monoclonal front a la Gal-1 humana i de ratolí. L’eficàcia de l’anticòs es provarà amb la introducció d’aquest amb timòcits (obtinguts del tim del ratolí) i Gal-1
humana i murina i s’observarà si en els tubs tractats amb anticossos la mort dels timòcits és menor en comparació amb els tubs no tractats.

6.7.1. Extracció del timus

Els ratolins que se’ls va extreure el timus ja que és el lloc de maduració dels limfòcits T i així obtenim una població de timòcits. Els dos ratolins triats (180008616 i 180027148) van ser sacrificats en diferents dies (16/05/2018 i 07/06/2018, respectivament) per anòxia a la cambra de CO₂. La necròpsia es va dur a terme en condicions asèptiques. Es realitzà un tall a la part abdominal del rosegador amb l’ajuda d’unes tisores i es va separar el peritoneu de la pell de tot l’abdomen del ratolí. Seguidament, es va realitzar un tall per separar la caixa toràcica per tal de que el timus quedes al descobert. Una vegada localitzat el timus es va extreure amb l’ajuda d’unes pinces i es va introduir en PBS. Les mostres recollides es mantingueren en gel.

La mostra de timus va ser disagregada amb l’ajuda d’un fílter i l’èmbol d’una xeringa, recollint la mostra en un nou falcon. Finalment, es va introduir el volum adequat de PBS per arribar a un volum final de 20 ml. Es va realitzar un comptatge de les cèl·lules presents al timus mitjançant una cambra de Neubauer. Finalment van obtenir un total de 128 milions i 216 milions de timòcits recollits en els dos respectius estudis funcionals.

6.7.2. Cultiu de timòcits en diferents condicions

El cultiu es realitzà en una microplaca de 96 pouets de fons pla. Es van preparar 5 falcons amb les cinc condicions diferents:
- Timòcits amb medi RPMI complet
- Timòcits amb medi HT
- Timòcits amb sobrenedant (anticossos en medi HT)
- Timòcits amb Galectina-1 humana
- Timòcits amb Galectina-1 humana + anticossos en medi HT

Per a preparar les mostres primerament es van preparar cinc alíquotes de 100 µl de cèl·lules del tim i es van centrifugar a 2000 rpm durant 5 minuts. Es va descartar el sobrenadant i es va resuspendre el precipitat sense afegir-hi medi. Es va afegir a cada ependorf el medi corresponent i es van sembrar 50 µl en una placa de 96 pouets de fons pla duent a terme una rèplica de cada condició per a evitar errors. El tub amb cèl·lules amb Galectina-1 humana se li va realitzar una incubació prèvia d’una hora a temperatura ambient per tal de que els anticossos fossin capaços de reconèixer la
protèina i es formessin complexes. La placa de 96 pouets va ser incubada durant una hora a 37°C i a 5% de CO₂.

En el segon estudi funcional dels anticossos es va realitzar un cultiu idèntic però amb la introducció dues noves condicions:
- Timòcits amb Galectina-1 murina
- Timòcits amb Galectina-1 murina + anticossos en medi HT

Els anticossos que es volien produir han de tindre doble reconeixement, per la Gal-1 humana i per la murina. Aquest fet és imprescindible per tal de poder realitzar estudis in vivo de l’anticòs en qüestió en ratolins, si l’anticòs només reconeix la Gal-1 humana no es podran realitzar els estudis previs i per tant no s’haurà pogut provar el seu efecte en animals abans d’utilitzar-lo en humans.

Aquest nou tub amb Gal-1 murina i anticossos també va requerir una prèvia incubació d’una hora tal i com es va realitzar amb el tub amb timòcits + Galectina-1 humana + anticossos.

6.7.3. Marcatge amb DAPI
S’utilitzà el DAPI (4’,6-diamino-2-fenilindol, Sigma-Aldrich® (St. Louis, MO)), com a biomarcador fluorescent que s’uneix fortament a regions enriquides en adenina i timina en seqüències d’ADN. D’aquesta manera es van poder distingir dues poblacions, les cèl·lules vives i les mortes, ja que si les cèl·lules es troben en apoptosi la seva membrana és permeable i el DAPI pot infiltrar-se i unir-se a l’ADN. Coneixent el percentatge de supervivència de la població de timòcits es va poder d’observar si l’anticòs havia bloquejat els efectes de la Gal-1 i es produïa menys mort limfocitària. Es va introduir un volum de 250 µl (dilució 1:10000 en PBS) en cada tub i es va deixar actuar 15-20 minuts màxim. No es pot sobrepassar el temps d’incubació amb DAPI ja que sinó la mort cel·lular és més elevada i els resultats no són concloents.

6.8. Anàlisi de les mostres

6.8.1. Citòmetre
Un cop transcorregut el temps d’incubació de 15 minuts que requereix el DAPI, les mostres van ser analitzades en un citòmetre de flux (LSR-II BD Bioscience). En el programa del citòmetre es van realitzar diferents seleccions per acabar obtenint el percentatge de supervivència de les cèl·lules. Primerament es van seleccionar mitjançant morfologia (complexitat i mida, Side Scatter i Forward Scatter,
respectivament) les cèl·lules que pertanyen a la població de limfòcits. Seguidament es van seleccionar els singlets, exclouent qualsevol doblet per descartar qualsevol lectura incorrecta durant l’anàlisi de fluorescència. La tercera selecció es va dur a terme mitjançant la negativitat generada per DAPI de les cèl·lules vives on es van obtenir percentatges de supervivència diferents en cada condició.

6.8.2. FACS DIVA
Una vegada vam obtindre els resultats del citòmetre aquests van ser analitzats mitjançant el programa analític FACS DIVA Software (BD Bioscience) on es van acotar les seleccions realitzades anteriorment per tal de que l’anàlisi fos més correcte i exacte.

6.8.3. Estadística
S’utilitza l’eina informàtica GraphPad Prism 6 per a recol·lectar els resultats i analitzar-los en un únic gràfic. Els resultats es presenten com una mitjana de les dues rèpliques que es van dur a terme i amb la barra d’error. Es considera un p valor < 0.05 es va considerar estadísticament significant.
7. Resultats
7.1. PCR
En el genotipat per Galectina-1 es van obtenir dues bandes diferents, una banda situada a 649 pb que correspondria al transgènic, una banda a 478 pb que correspondria al *wild type*. Una doble banda ens indicaria que el ratolí és heterozigot. A la figura 7 podem observar una imatge del gel d’agarosa dels nostres resultats.

![Figura 7. Dreta, genotipat del ratolí Galectina-1⁺. Una banda de gen d'interès juntament amb una banda *wildtype* indica un genotip heterozigot. Esquerra, parells de bases corresponents a cada banda del marcador.](image)

Finalment, vam obtenir el genotip dels dos ratolins utilitzats per les necròpsies, 180008616 i 180027148, que corresponia a dos rosegadors tipus *wild type* (dues bandes a 478 pb).

El genotip dels ratolins no afecta a l’estudi funcional dels anticossos ja que la producció de timòcitis no es veu condicionada al genotip⁴.

7.2. ELISA
En el moment que vaig començar a participar en el projecte d’obtenció d’un anticòs monoclonal les cèl·lules tenien el nom P5.F12 D4 B9 p2.G4.B5.C4 on cada letra i número correspon al pouet que ha donat més coloració al test, de tal manera que prèviament s’havien dut a terme 8 expansions dels pouets amb més senyal obtinguts amb els tests ELISA previs. Aquest pouet va ser sortejat en una placa de 96 pouets de fons pla mitjançant el mètode *Cell Sorting* (FACSria III (BD)) on, suposadament, en cada pouet s’inocular una única cèl·lula (poden caure dues o cap) de tal manera que ens assegurem de que els anticossos provinguin d’un únic clon. Arribats en aquest punt, de

⁴ A l’Annex 1.2 es pot consultar el protocol de la PCR i al 1.3 el protocol del gel.
la placa sortejada es van observar en el microscopi òptic les colònies que s’havien format i només es van analitzar per test ELISA aquelles que presentaven una única colònia per tal d’asegurar-nos que els anticossos produïts provenien d’un únic clon. La figura 8 mostra la colònía òptima que s’havia de tenir per tal de poder dur a terme l’anàlisi.

Figura 8. Imatge representativa de la colònia d’hibridomes òptima. Per a la realització del test ELISA només hi podia haver una colònia a la placa i aquestes havien d’estar marginades. Microscopi òptic 40x escala d’imatge 20µm i 100x escala d’imatge 10µm.

Mitjançant ELISA es varen seleccionar un total de 10 hibridomes per ser els que van produir anticossos anti Gal-1 amb major qualitat, (ubicats als pouets B7, B8, B9, C9, D8, E7, F2, F4, F5 i G2 de la microplaca) es van passar per expandir-les en una placa de 24 pouets. A la figura 9 es mostren els resultats obtinguts amb l’espectofotòmetre (Infinite M200, TECAN) a 655 nm.

Figura 9. ELISA nº 35. Resultats de la lectura amb l’espectofotòmetre a 655nm, només es mostren els pouets més positius.

<table>
<thead>
<tr>
<th>Pouet</th>
<th>Anticossos</th>
<th>Resultat</th>
</tr>
</thead>
</table>

5 A l’Annex 2.1 es poden consultar les taules suplementàries dels diferents test ELISA.
Per tal de conservar els pouets més positius aquests van ser congelats i emmagatzemats amb nitrogen mitjançant criopreservació.

Transcorregudes dues setmanes, es va realitzar un altre test ELISA per tal de conèixer l’especificitat del sobrenedant amb la Galectina-1 murina, els resultats complerts es poden observar a l’Annex, a la figura 10 observem els pouets que van donar una coloració més positiva.

![Figura 10. ELISA nº 36. Resultats de la lectura amb l’espectofotòmetre a 655nm, només es mostren els pouets més positius.](image)

Després de la realització d’aquest ELISA els pouets B8, F2 i F4 van ser barrejats en un ependorf agafant una alíquotada de 100 µl de cada un i van ser sortejats novament pel mètode Cell Sorting (FACSaria III (BD)). Transcorregut el temps de cultiu (dues setmanes), es van observar les mostres al microscopi òptic i només es van testar aquelles que mostraven un creixement cel·lular òptim (resultat a la figura 11).

![Figura 11. ELISA nº 37. Resultats de la lectura amb l’espectofotòmetre a 655nm, només es mostren els pouets més positius.](image)

Aquestes cèl·lules es van passar en una placa de 24 per expandir-les i poder-les tornar a testar en dues setmanes.

Arribats en aquest punt, on teòricament l’anticòs ja hauria de provenir d’un únic clon, el test es realitzà a la següent setmana (no dues setmanes com es realitzava en els altres experiments) per tal de provar una nova manera de cultivar les cèl·lules mitjanant una superfície de macròfags que els hi donin els nutrients necessaris per a la seva supervivència. Potser el medi HT no promovia el seu creixement òptim. D’aquesta manera els resultats que es van obtenir són els següents:
La senyal no va ser molt elevada degut, segurament, a que les cèl·lules només tenien una setmana d’expansió i no havien pogut produir suficients anticossos, tot i així cada pouet va ser “sortejat” mitjançant el mètode Cell Sorting (FACSARia III (BD)) en una placa de 96 de fons pla on hi havia macròfags adherits. Tot i així, aquests dos pouets van ser els seleccionats per a dur a terme el primer estudi funcional dels anticossos.

Transcorreguda una setmana la placa de 96 es va observar al microscopi i es van seleccionar només aquells pouets que presentaven una colònia òptima, i com bé s’ha anat explicant al llarg del projecte, es van testar per ELISA. En aquest moment es va provar l’eficàcia del sobrenedant no només amb Galectina-1 murina, tal i com s’havia provat en els altres estudis, sinó també amb Galectina-3 i Galectina-1 humana. A la figura 13 s’observen els resultats amb les diferents galectines.

<table>
<thead>
<tr>
<th>Galectina-1 humana</th>
<th>0,16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,20</td>
</tr>
<tr>
<td>Galectina-3</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td>0,11</td>
</tr>
<tr>
<td>Galectina-1 murina</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>0,75</td>
</tr>
</tbody>
</table>

Es pot observar que el sobrenedant reconeix dèbilment a la Galectina-1 humana, gairebé no reconeix a la Galectina-3 i reconeix de forma molt específica a la Galectina-1 murina. En la lectura el control negatiu (PBS) va ser de 0,07, d’aquesta manera es pot notar que el resultat obtingut per la Galectina-1 humana triplica el control negatiu, per tant, encara que el reconeixement per part de l’anticòs sigui dèbil no es pot concloure que no hi ha reconeixement. Aquesta poca interacció proteïna-anticòs pot ser deguda a la baixa concentració de l’anticòs (es troba en medi HT). Tot i així, observem que si que hi ha una bona interacció amb la Galectina-1 murina i encara que l’anticòs es trobes diluït té més especificitat per la Galectina-1 murina que la humana. Referent a la Galectina-3 no s’observa gaire especificitat, encara que doni un resultat gairebé doblant el control negatiu. Aquesta no-especificitat per la Galectina-3 pot ser degut a les diferències que presenta front amb la Galectina-1 humana (identitat del 15,476%).
tanmateix s’observa la mateixa identitat front a la Galectina-1 murina. Potser el no reconeixement de la Galectina-3 recau en la seva seqüència o en el seu plegament tridimensional.

Els resultats dels pouets amb més coloració es mostren a la figura 14:

En aquest test alguns pouets van donar més senyal que el propi control positiu de tal manera que potser en aquest punt els híbridomes s’han clonat correctament i els anticossos que secretaven provenien d’un únic clon. Com bé s’havia realitzat amb anterioritat es va dur a terme un Cell Sorting (FACS aria III (BD)) del pouet més positiu.

Finalment, transcorregut el temps de creixement de les cèl·lules es va realitzar un altre test ELISA per comprovar si la suposició de que les cèl·lules s’havien clonat correctament era o no correcta. Prèviament s’havien seleccionat els pouets que tenien la colònia adequada mitjançant la seva observació al microscopi óptic. Els resultats obtinguts es poden observar a continuació:

Figura 15. ELISA nº 40. Resultats de la lectura amb l’espectofotòmetre a 655nm, només es mostren els pouets més positius.
La lectura del resultat mostra que 75% aproximadament dels pouets testats van donar una senyal gairebé tots un nombre major que 1. D’aquesta manera, no es pot assegurar del cert de que l’anticòs estigui clonat correctament així que es va repetir els procediments anteriors i es van sortejar per *Cell Sorting* (FACSaria III (BD)) els pouets més positius. Aquest va ser l’últim test ELISA que vaig realitzar durant el meu projecte. Gràcies als resultats obtinguts en el test ELISA nº 40 es van seleccionar els pouets més positius per tal de dur a terme el segon estudi funcional dels anticossos que s’explicarà amb més detall a continuació.

7.3. Isotip

Els resultats obtinguts per l’espectofotòmetre (Infinite M200, TECAN) llegit a 655nm es poden observar a la figura 16. Només es va testar amb IgG perquè la selecció dels híbridomes s’havia realitzat amb anti-IgG.

![Figura 16. Resultats de la lectura amb l'espectofotòmetre a 655nm. Es mostren els pouets positius pels diferents isotips.](image)

Els resultats mostren que no només s’estava produint un anticòs, sinó que els híbridomes secretaven dos anticossos diferents, un amb una cadena pesada IgG1 i l’altre amb IgG2a. D’aquesta manera, potser l’anticòs IgG1 reconeix la Galectina-1 murina i per això s’ha observat els test ELISA que la seva especificitat és major. Tanmateix, el segon anticòs IgG2a potser reconeix la Galectina-1 humana.

Aquesta secreció de dos anticossos pot ser degut a que d’híbridoma no es troba clonat correctament, i que per tant s’han de seguir realitzant seleccions per tal d’obtenir finalment un únic clon.
7.4. Estudi funcional dels anticossos

Per tal de conèixer quina era la població de limfòcits que s’havien de seleccionar, ens vam basar en el model estandaritzat, vegeu figura 17, obtingut a partir d’una mostra de sang, on es mostren les diferents poblacions de leucòcits posicionats en el *dotplot* segons complexitat (*Side Scatter*) i mida (*Forward Scatter*).

La complexitat es defineix segons la granulacitat de la cèl·lula, de tal manera que els limfòcits es troben en nivells baixos de complexitat perquè el seu nucli ocupa gairebé la totalitat de la cèl·lula i no tenen, a diferència dels monòcits i neutròfils, grànuls (tals com vesícles amb enzims lítics) al seu interior.

Primerament es mostraran els resultats obtinguts amb el primer estudi funcional que es va realitzar i on només es va observar l’efecte dels anticossos front a la Galectina-1 humana. La selecció de les cèl·lules vives es va realitzar mitjançant DAPI que s’uneix a l’ADN i que per tant, seleccionarà positivament aquelles cèl·lules que es trobin en apoptosi ja que mostraran una membrana permeable per tal de que s’hi pugui infiltrar el DAPI.
En els dos estudis de funcionalitat dels anticossos realitzats es va realitzar un duplicat per tal de reduir possibles error⁶. Mitjançant el control amb RPMI es va fixar la gate que ens marcaria el percentatge de cèl·lules vives. Aquesta gate és la quadrícula que es pot observar a la figura 18 (i que es repeteix a tots els dotplots) on es selecciona les cèl·lules vives que s’ha ajustat englobant cèl·lules que ja no es troben en el contour plot i que es troben en pre-apoptosi però no les podem seleccionar com a apopòtiques. Una vegada fixada la gate correcta aquesta no va ser modificada per tal de poder estandaritzar les nostres mostres.

Figura 18. A l’esquerra dotplot on es selecciona la població de timòcits vius tractats amb medi RPMI. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

A la figura 19 s’observa en blau el total de timòcits vius i en verd els que es troben en fase pre-apoptòtica o apoptòtica. Tanmateix, es pot observar que el medi HT, tal i com passava amb el medi RPMI (figura 18), no produeix mort dels timòcits i per tant, els tubs tractats amb RPMI i HT no es veuran afectats pel medi. Tanmateix, observem el mateix resultat quan els timòcits van ser tractats amb anticossos (figura 20).

Figura 19. A l’esquerra dotplot on es selecciona la població de timòcits vius tractats amb medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

A l’Annex 2.1. es poden consultar els resultats dels duplicats del primer estudi funcional.

⁶ A l’Annex 2.1. es poden consultar els resultats dels duplicats del primer estudi funcional.
A la figura 21 podem observar que el percentatge de timòcits vius (blau) disminueix considerablement pels efectes de la Galectina-1, i per aquesta raó s’observa al *dotplot* un increment de les cèl·lules en fase apoptòtica (verd). Aquesta correlació es manté en la figura 22 on es mostra els timòcits tractats amb Gal-1 i anticossos. Tot i així, la taula amb els percentatges de supervivència de timòcits tractats amb anticossos i Gal-1 mostra un percentatge de supervivència menor en comparació amb els timòcits tractats amb només Gal-1. Aquests resultats es confirmen amb la realització d’un duplicat en ambdues condicions.

Figura 20. A l’esquerra *dotplot* on es selecciona la població de timòcits vius tractats amb anticossos. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Figura 21. A l’esquerra *dotplot* on es selecciona la població de timòcits vius tractats amb Galectina-1 humana i medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.
Els *dotplots* mostren que la població de timòcits no es veu afectada en el medi RMPI, en el medi HT i tampoc s’observen diferències en el tub on s’hi van introduir els anticossos. En el tub on s’hi va introduir Galectina-1 humana (figura 21) si que es pot observar una disminució important de la població dels timòcits vius (48,3% i 48,8% de supervivència total, el segon valor sempre correspon al duplicat) tanmateix, podem observar que també es produeix mort limfocitària en el tub tractat amb Galectina-1 humana i el sobrenedant d’anticossos monoclonals (figura 22), on s’observa que la mort és fins i tot major que en el tub on només hi havia la proteïna (44,6% i 43,8% tub amb anticossos i Galectina-1).

Figura 22. A l’esquerre *dotplot* on es selecciona la població de timòcits vius tractats amb Galectina-1 humana i anticossos. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Els resultats esperats mostren una disminució de la supervivència en la població de timòcits tractats amb Galectina-1 humana i un augment de la supervivència en aquells limfòcits que van ser tractats amb els anticossos monoclonals i la Galectina-1.

Figura 23. Percentatge de supervivència dels timòcits en el primer estudi funcional. Els valors representen la mitjana de les dues mostres i la seva respectiva barra d’error.

Els resultats esperats mostrarien una disminució de la supervivència en la població de timòcits tractats amb Galectina-1 humana i un augment de la supervivència en aquells limfòcits que van ser tractats amb els anticossos monoclonals i la Galectina-1.
A la figura 23 s’observen clarament les diferències de la supervivència de la població de timòcits, on els tubs tractats amb Galectina-1 mostren una davallada en la supervivència dels timòcits i en els tubs tractats amb els anticossos i la Galectina-1 humana aquesta disminució de la supervivència és encara més pronunciada.

Tal i com s’esperava, s’observa que el tub tractat amb Galectina-1 mostra una disminució de la supervivència dels timòcits en comparació amb els tubs tractats amb medi RPMI o medi HT, d’aquesta manera és confirma la hipòtesi de que la Galectina-1 produeix mort limfocitària. [8], [11]–[13]

Amb els resultats d’aquest primer estudi es pot concloure que l’anticòs no està realitzant la funció desitjada que és bloquejar els efectes de la Galectina-1 humana i per tant augmentar la supervivència de la població de timòcits, al contrari, observem que el tub tractat amb anticossos i Galectina-1 es produeix més mort limfocitària. Aquests resultats poden ser deguts a que l’anticòs es troba molt diluït amb el medi i per tant la concentració no és suficient per tal de bloquejar els efectes de la nostra proteïna d’interès. Una altra possibilitat és que la Galectina-1 humana es trobi molt concentrada front a la concentració del nostre anticòs i per tant els seus possibles efectes siguin insuficients. Tanmateix, ens totem amb la pregunta de si l’anticòs que s’està produint realitza la funció que es desitja i per tant, s’espera la realització d’un altre estudi funcional per tal de descartar que l’anticòs no produeixi els efectes esperats.

Degut a que al primer estudi no es va poder observar cap efecte de l’anticòs sobre la Galectina-1 humana, en el segon estudi es va voler provar l’eficàcia de l’anticòs sobre la Galectina-1 murina. Tot i així, degut a la manca de disponibilitat de suficient Galectina-1 murina no es va poder realitzar el control amb timòcits i Galectina-1 murina, tot i que els estudis previs afirmen els efectes negatius de la proteïna front a la població de timòcits els resultats que es mostren a continuació no són concloents.
Les gates que s’observen van estar fixades tal i com s’esmenta en el primer experiment i no van ser modificades en cap condició.

Observem a la figura 24 que el percentatge de timòcits vius és elevat (blau) i per tant, el medi RPMI no afecta a la població dels timòcits. Aquesta mateixa distribució s’observa a les figures 25 i 26, on les mostren van ser tractades amb medi HT i anticossos amb medi HT, respectivament.

Figura 24. A l’esquerre dotplot on es selecciona la població de timòcits vius tractats amb medi RPMI. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Figura 25. A l’esquerre dotplot on es selecciona la població de timòcits vius tractats amb medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.
Figura 26. A l’esquerra dotplot on es selecciona la població de timòcits vius tractats amb anticossos i medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Figura 27. A l’esquerra dotplot on es selecciona la població de timòcits vius tractats amb Galectina-1 humana i medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

A la figura 27 es mostra els timòcits tractats amb Gal-1 humana i medi HT, on tal i com es pot veure al dotplot les cèl·lules vives (blaves) són menors que les mortes o pre-apoptòtiques (verdes). Aquesta mateixa correlació s’esperaria en un tub tractat amb timòcits i Gal-1 murina, però no ha sigut possible la realització d’aquest experiment. Tanmateix, s’observa a la figura 28 que el percentatge de cèl·lules vives augmenta considerablement quan van ser tractades amb anticossos i Gal-1 murina. A la figura 29 es mostren els timòcits tractats amb anticossos i Gal-1 humana, on la supervivència no és tant elevada com en el tub tractat amb anticossos i Gal-1 murina (45,9 % i 92,2%, respectivament).
Els *dotplots* obtinguts al segon estudi funcional dels anticossos mostren, com bé es va observar al primer estudi, que la població de timòcits no es veu afectada en els tubs tractats amb medi RMPI, medi HT i anticossos (figures 24, 25 i 26). Tanmateix, seguint amb la mateixa dinàmica que en el primer estudi el tub tractat amb Galectina-1 humana (figura 27) s’observa una disminució en la supervivència de la població de timòcits (53,4 % i 41,9% de supervivència). Podem observar a la figura 28 que el tub tractat amb anticossos i Galectina-1 murina no es produeix mort limfocitària, obtenint així una supervivència del 92,2% i 91,6%. Tot i així, el tub tractat amb anticossos i Galectina-1 humana (figura 29) mostra poca supervivència (46,9% i 55,2%) tal i com es va poder observar en el primer estudi funcional.

![Figura 28](image1.png)

Figura 28. A l’esquerre *dotplot* on es selecciona la població de timòcits vius tractats amb Galectina-1 murina i anticossos. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

![Figura 29](image2.png)

Figura 29. A l’esquerre *dotplot* on es selecciona la població de timòcits vius tractats amb Galectina-1 humana i anticossos. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.
A la figura 30 es poden observar clarament els resultats que s’exposaven anteriorment, on el percentatge de supervivència no es veia afectat en els tubs tractats amb medi RMPI, medi HT i anticossos. Tal i com s’exposava a la hipòtesi el tub tractat amb Galectina-1 humana s’observa una disminució en la supervivència de timòcits, així per segona vegada els efectes negatius que te la presència de Gal-1 en la població dels timòcits.

En aquest segon estudi s’inclou un sisè tub amb anticossos i Galectina-1 murina, a diferència del realitzat amb anterioritat, i els resultats (figura 28) mostren una major supervivència de timòcits (92,2% i 91,6%) en comparació amb el tub tractat amb anticossos i Galectina-1 humana (figura 29) que tal i com es va observar en el primer estudi no afavoreixen a la supervivència de la població dels timòcits (46,9% i 55,2%). Tot i així, realitzant les mitjanes dels dos percentatges obtinguts en cada tub (es van realitzar duplicats per reduir el nombre d’errors) es pot observar a la figura 30 que la mitjana obtinguda amb els tubs tractats amb Galectina-1 humana i anticossos és lleugerament major (51,05%) que la obtinguda amb els tubs tractats sense anticossos (47,65). Potser amb el temps de creixement i selecció de l’hibridoma entre el primer i el segon estudi funcional la especificitat dels anticossos va augmentar i per això s’observa un lleuger increment en la supervivència dels timòcits en els tubs tractats amb Gal-1 humana i anticossos en comparació amb els tubs sense anticossos.

Analitzant els resultats obtinguts amb el segon estudi es pot discutir que els anticossos sí que reconeixen i, per tant, bloquegen els efectes negatius de la Galectina-1 murina però no la humana. Aquest fet pot ser degut a que els estudis realitzats per seleccionar els anticossos monoclonals es va realitzat amb Galectina-1 murina, encara que el ratolí
va ser immunitzat amb Galectina-1 humana, ja que es requeria la reactivitat creuada per
tal de poder realitzar estudis clínics amb ratolins abans de ser subministrats en humans.
Aquest fet pot haver seleccionat anticossos sense especificitat o amb especificitat molt
baixa per a reconèixer la Galectina-1 humana i els resultats obtinguts amb els estudis
cigonals corroboren amb els obtinguts al test ELISA número 38 (veure figura 13) on
s’observa la baixa afinitat de l’anticòs per reconèixer Gal-1 humana.
Potser la Gal-1 murina no produeix tanta mort timòcitària com ho fa la Gal-1 humana, i
per això observem un increment en la supervivència dels timòcits en els tubs tractats
amb anticossos i Gal-1 murina.
En aquest segon estudi es van tindre en compte les possibles problemàtiques analitzades
en el primer estudi, tals com la baixa concentració de l’anticòs i com a conseqüència,
l’alta concentració de la Galectina-1 humana, així que es va concentrar tot el possible
l’anticòs disminuint el volum de medi HT. Tot i així, s’observen els mateixos efectes
negatius sobre la població de timòcits, així que es pot discutir si la concentració de
l’anticòs, tot i ser major que la testada en el primer estudi, era suficient per inhibir els
efectes de la Gal-1.
Un dels altres efectes que podrien afectar al reconeixement de la Galectina-1 humana
per part del anticòs podria ser la seva seqüència, és a dir, que tingues una seqüència
molt complexa per ser reconeguda per el nostre anticòs. D’aquesta manera, es va dur a
terme un estudi d’identitat[25] per tal de observar les diferències i semblances entre la
Galectina-1 humana (no reconeguda per l’anticòs) i la Galectina-1 murina (si
reconeguda per l’anticòs).

Figura 31. Aliniament de la Gal-1 humana i Gal-1 murina realitzat amb la base de dades UniProt. No s’observen
canvis significatius a nivell de seqüència.

Tal i com es pot observar a la figura 31 les dues proteïnes no tenen diferències
significatives a nivell de seqüència, la seva homologia recau al 88,148%. Tot i així, les
petites diferències que hi ha a nivell de seqüència poden comportar un menor o major
reconeixement per part de l’anticòs. Les immunoglobulines no reconeixen estrictament
la seqüència de la proteïna, sinó certs aminoàcids en posicions determinades de tal
manera que el plegament de la proteïna pot afavorir o empitjorar el seu reconeixement per part de l’anticòs. Paral·lelament, es va estudiar el possible efecte de la conformació tridimensional que té la Galectina-1 humana per tal de impedir el seu bloqueig per part de l’anticòs i aquest fet pot ser degut a que segons bibliografia [10] la Galectina-1 humana forma dímers els quals poden estar impedint el reconeixement de l’epítop per l’anticòs en qüestió. Tanmateix, la formació de dímers també s’observa en Galectina-1 murina així que no es pot considerar un fet rellevant.

L’obtenció d’un anticòs amb reactivitat creuada és important per tal de poder-lo utilitzar per provar l’efecte de l’anticòs en estudis pre-clírics en ratolins, tot i així, la selecció mitjançant test ELISA s’hauria d’haver realitzat mitjançant Galectina-1 humana i provar l’especificitat de la Galectina-1 murina. Potser aquest és el problema per el qual l’anticòs produït no mostra una especificitat elevada per la Galectina-1 humana i per tant, no pot bloquejar els seus efectes negatius front a la mort dels timòcits.
8. Conclusions
- El reconeixement de l’anticòs per la Galectina-1 murina és més específic que per la Galectina-1 humana.
- La Galectina-1 humana a concentració de 2 \(\mu \text{mol/\mu l} \) produeix mort als timòcits.
- L’híbridoma no està clonat i per tant, es secreten dos anticossos.
- L’anticòs produeït realitza un bloqueig menor front a la Galectina-1 humana, però si que realitza el bloqueig esperat front a Galectina-1 murina.

9. Problemàtica
La mort dels híbridomes durant el clonatge va ser una de les principals problemàtiques que ens vam trobar, la solució va ser realitzar un cultiu amb macrófags adherits a la placa per tal de que subministressin nutrients als híbridomes i afavorissin el seu creixement.

La no disponibilitat de suficient Galectina-1 murina per tal de realitzar el segon estudi funcional d’anticossos i provar la seva eficàcia front a la població de timòcits ens comporta uns resultats no concloents.

10. Futurs plans de treball
El primer pas que s’hauria de realitzar és la finalització del clonatge de l’híbridoma on s’hauria de testar mitjançant ELISA la reactivitat creuada front a Gal-1 humana i Gal-1 murina paral·lelament, és a dir, utilitzant els mateixos clons per a testar les dues proteïnes.

Una vegada comprovada la reactivitat per Gal-1 murina i Gal-1 humana l’anticòs s’haurà de purificar i concentrar per tal de testar la seva funcionalitat en un tercer estudi funcional. Tanmateix, la realització d’un tercer estudi funcional dels anticossos amb Galectina-1 murina, quan estigui disponible, per tal d’observar si la proteïna produeix mort als timòcits de la mateixa manera que hi fa Gal-1 humana.

Seria convenient la realització d’estudis pre-clínics per tal de testar la funcionalitzat de l’anticòs in vivo i si els resultats són òptims, s’hauria d’humanitzar l’anticòs mitjançant enginyeria genètica i realitzar estudis clínics en pacients amb PDAC.
11. Bibliografía

Annex

1. Protocols.. 2
 1.1. Digestió de les cues.. 2
 1.2. Protocol PCR. ... 3
 1.3. Protocol del gel ... 4
 1.4. ELISA .. 5
2. Figures suplementàries ... 7
 2.2. Taules ELISA .. 7
 2.3. Primer estudi funcional d’anticossos ... 12
 2.4. Segon estudi funcional d’anticossos .. 14
1. Protocols

1.1. Digestió de les cues

La digestió de les cues es dur a terme mitjançant la tècnica de precipitació amb isopropanol, el protocol s’explica a continuació:

1. Afegir a cada mostra 400 µl de buffer de lisis.
2. Afegir a cada mostra 10 µl de Proteïnasa K (Stock a 20mg/ml).
3. Vortear i incubar a 55°C o/n.
4. Vortear.
5. Centrifugar a 1400 rpm durant 8 minuts.
6. Recol·lectar 350 µl de sobrenedant en un nou tub i retolar-lo amb el nom corresponent.
7. Afegir 350 µl d’isopropanol.
8. Barrejar per inversió varies vegades fins a veure que el ADN ha precipitat (es visualitza un cabdell a ull nu).
9. Centrifugar a 1400 rpm durant 5 min.
10. Descartar el sobrenedant per decantació.
11. Afegir 250 µl d’etanol al 70%.
12. Centrifugar a 1400 rpm durant 3 min.
13. Descartar el sobrenedant i deixar eixugar el pellet a temperatura ambient.
14. Una vegada el pellet es troba completament eixut, afegir 500 µl de TE i deixar o/n a temperatura ambient.

Buffer de Lisis: 100 mM Tris-HCl pH=8,5
5 nM EDTA
200 mM NaCl
1% SDS

Referència Proteinassa K Proteinase K PCR grade, 100 mg ROCHE 03 115879 001 Proteinase K PCR grade, 250 mg x 2 ROCHE 03 115801 001
1.2. Protocol PCR.

1. Vortejar les mostres i centrifugar-les per tal de que no hi hagi capgota a les parets de l’*ependorf*. Es realitza un *spin*, no cal una centrifugació llarga.
2. Descongelar els reactius necessaris. La taq es deixà dins del congelador fins al moment necessari.
3. Es crea una mix amb tots els reactius amb els volums necessaris (indicats al full de la PCR, serà diferents en cada PCR). La mix es fa i es reparteix amb puntes de filtre.
4. La taq i els dNTP són els últims reactius que s’han d’introduir a la mix.
5. Es reparteixen 18 µl en cada *ependorf* de PCR.
6. S’introduceixen 2 µl de mostra en cada *ependorf*.
7. Les mostres estan llestes per posar-les al termocilcador.

Primers utilitzats per genotipar el ratolí:
5’ Gal1: CTCAGTGGCTACATCTGTAAAATGG
3’ Gal1: TTCTTTGACATTTGAACCCTATACC
3’ Neo: GTGGTCTTGGACAAAAAGAACC

<table>
<thead>
<tr>
<th>Reactiu</th>
<th>Casa comercial</th>
<th>Concentració</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYBR Safe DNA Gel Stain</td>
<td>Invitrogen</td>
<td>400 µL (10,000x in DMSO)</td>
<td>1933713</td>
</tr>
<tr>
<td>Biotaq DNA</td>
<td>Bioline</td>
<td>5 u/µL</td>
<td>BIO-21040</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Bioline</td>
<td>50 mM</td>
<td>Mg-617105</td>
</tr>
<tr>
<td>Reaction buffer</td>
<td>Bioline</td>
<td>10 x NH₄</td>
<td>NH-617105</td>
</tr>
<tr>
<td>TAE</td>
<td>PanReac AppliChem</td>
<td>1x</td>
<td>7V015544</td>
</tr>
</tbody>
</table>
1.3. Protocol del gel

1. Es pesa l’agarosa en una balança analítica segons el percentatge que necessitem (1,5g si el percentatge és de 1,5%).
2. Una vegada pesada l’agarosa en un erlenmeyer se li introduceix 100 ml de TAE.
3. Es calenta la dissolució al microones durant 2 min.
4. Es munta la superfície del gel i se li introdueixen les pintes necessàries (15 o 20 pouets).
5. Se li introduceix 10 µl de SYBR Safe al gel.
6. Una vegada les mostres estan llestes del termocilador, se’ls introduceix 4,2 µl de buffer de càrrega.
7. Finalment, s’introduceix 20 µl de mostra en cada pouet deixant els dos últims pous pel marcador i el blanc, respectivament.

<table>
<thead>
<tr>
<th>Reactiu</th>
<th>Casa comercial</th>
<th>Concentració</th>
<th>Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galectina-1 murina</td>
<td>ABCAM</td>
<td>1 µg/mL</td>
<td>AB134630</td>
</tr>
<tr>
<td>Antiòxid segundari</td>
<td>ABCAM</td>
<td>1 mg/mL</td>
<td>W401B</td>
</tr>
<tr>
<td>TMB</td>
<td>Sigma</td>
<td>100 mL</td>
<td>T0440</td>
</tr>
</tbody>
</table>
1.4. ELISA
Mitjançant el test ELISA s’analitzen el sobrenadants dels hibridomes, el protocol s’explica a continuació:
S’utilitza una placa de 96 pouets de fons pla.

1. En cada pouet se li introdueix 100 µl de proteïna pura, en aquest cas Galectina-1 murina, a una concentració de 2,5 µg/ml dissolta en Tris-HCl 0,1M, pH=8. En cada cas, segons la quantitat de mostres que s’havien d’analitzar s’havia de calcular la quantitat necessària de proteïna pura.
Incubar 1h a 37°C (temps mínim) o o/n a 4°C.
Una vegada ha transcorregut el temps, eliminar el líquid per decantació, no rentar.

2. Bloquejar amb PBS +5% de llet en pols, i introduir 100 µl en cada pouet. La solució de bloqueig s’ha de posar en agitació anteriorment per tal de que la solució estigui ben homogeneïtzada.
Incubar 30 min a 37°C (temps mínim) o o/n a 4°C.
Eliminar el líquid per decantació, no rentar.

3. Introduir 100 µl del sobrenedant de l’hibridoma anti-galectina en cada pouet. Aquest s’ha recollit prèviament a la sala de cultius i s’ha introduït en diferents ependorfs.
Incubar 45 min a 37°C (temps mínim) o o/n a 4°C.
Realitzar tres rentats amb buffer de rentat: PBS + 1% Tween 20. Eixugar la placa colpejant-la repetides vegades sobre el paper.

4. Afegir 100 µl per pouet de l’anticòs anti-mouse IgG marcat amb HRP a una dilució de 1/250 en PBS+5% de llet en pols. En cada cas, segons la quantitat de mostres que s’havien d’analitzar s’havia de calcular la quantitat necessària d’anticòs.
Incubar 45 min a 37°C (màxim 1h).
Realitzar cinc rentats amb buffer de rentat: PBS+ 1% Tween 20. Rentar un cop més amb aigua destil·lada. Eixugar la placa colpejant-la repetides vegades sobre el paper.

5. Afegir 100 µl de TMB Líquid Substrate System for ELISA (SIGMA T0440) substrat que reaccions amb HRP.
Deixar actuar un temps suficient, entre 15 i 20 min, per tal de que es desenvolupi el color. Protegir la plaga de la llum. Esperar fins que el control positiu tingui una bona senyal de color i el control negatiu sigui incolor.

Llegir a 655 nm en l’espectofotòmetre.
2. Figures supplementàries

2.2. Taula ELISA

<table>
<thead>
<tr>
<th>ELISA nº 35</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID. MUESTRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>control + 46154 dil 1/2000</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>PBS</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Figura sup 1. Organització de la plaça per test ELISA

Figura sup 2. Resultats obtinguts amb l’espectofotòmetre a 655nm

<table>
<thead>
<tr>
<th>Tiemps incubació Galectina murina</th>
<th>3:00 h</th>
<th>37ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiemps bloqueig</td>
<td>2:00 h</td>
<td>37ºC</td>
</tr>
<tr>
<td>Tiemps d'incubació sobrenadant</td>
<td>o/n a 4ºC</td>
<td>1:00 h a 37ºC</td>
</tr>
<tr>
<td>Tiemps incubació mouse-HRP</td>
<td>1:00 h</td>
<td>37ºC</td>
</tr>
<tr>
<td>Tiemps revelat</td>
<td>15 min</td>
<td>Temp ambient</td>
</tr>
</tbody>
</table>

Figura sup 3. Temps de reacció del test ELISA
ELISA nº 36

MUESTRA

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

Figura sup 4. Organització de la placa per test ELISA

Figura sup 5. Resultats obtinguts amb l'espectofotòmetre a 655nm

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>OVER</td>
<td>0,78</td>
</tr>
<tr>
<td>B</td>
<td>0,07</td>
<td>0,97</td>
</tr>
<tr>
<td>C</td>
<td>0,17</td>
<td>0,22</td>
</tr>
<tr>
<td>D</td>
<td>0,81</td>
<td>0,25</td>
</tr>
<tr>
<td>E</td>
<td>0,31</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0,21</td>
<td></td>
</tr>
</tbody>
</table>

Figura sup 6. Temps de reacció del test ELISA

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temps incubació Galectina murina</td>
<td>2:45 h</td>
<td>37°C</td>
</tr>
<tr>
<td>Tiemps bloqueig</td>
<td>1:30 h</td>
<td>37°C</td>
</tr>
<tr>
<td>Temps d’incubació sobrenadant</td>
<td>o/n a 4°C</td>
<td>1:45 h a 37°C</td>
</tr>
<tr>
<td>Temps incubació mouse-HRP</td>
<td>50 min</td>
<td>37°C</td>
</tr>
<tr>
<td>Tiemps revelat</td>
<td>18 min</td>
<td>Temp ambient</td>
</tr>
</tbody>
</table>

Tiemps incubació Galectina murina 2:45 h 37ºC
Tiemps bloqueig 1:30 h 37ºC
Tiemps d’incubació sobrenadant o/n a 4ºC 1:45 h a 37ºC
Tiemps incubació mouse-HRP 50 min 37ºC
Tiemps revelat 18 min Temp ambient
Figura sup 7. Organització de la plaça per test ELISA

<table>
<thead>
<tr>
<th>ID. MUESTRA</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

Figura sup 8. Resultats obtinguts amb l'espectofotòmetre a 655nm

Tiemps incubació Galectina murina	1:45 h	37°C
Tiemps bloqueig	3:00 h	37°C
Tiemps d’incubació sobrenadant	o/n a 4°C	1:15 h a 37°C
Tiemps incubació mouse-HRP	1:00 h	37°C
Tiemps revelat	25 min	Temp ambient

Figura sup 9. Temps de reacció del test ELISA
<table>
<thead>
<tr>
<th>ELISA nº 38</th>
<th>ID. MUESTRA</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

Figura sup 10. Organització de la placa per test ELISA
Figura sup 11. Resultats obtinguts amb l' espectofotòmetre a 655nm

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,01</td>
<td>0,09</td>
</tr>
<tr>
<td>B</td>
<td>0,08</td>
<td>0,12</td>
</tr>
<tr>
<td>C</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0,11</td>
<td></td>
</tr>
</tbody>
</table>

Figura sup 12. Temps de reacció del test ELISA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiemps incubació Galectina murina</td>
<td>1:30 h 37ºC</td>
</tr>
<tr>
<td>Tiemps bloqueig</td>
<td>1:45 h 37ºC</td>
</tr>
<tr>
<td>Tiemps d'incubació sobrenadant</td>
<td>o/n a 4ºC 1:10 h a 37ºC</td>
</tr>
<tr>
<td>Tiemps incubació mouse-HRP</td>
<td>1:05 h 37ºC</td>
</tr>
<tr>
<td>Tiemps revelat</td>
<td>25 min Temp ambient</td>
</tr>
</tbody>
</table>
Temp. ambient: 620 min 37°C

<table>
<thead>
<tr>
<th>5.09</th>
<th>0.25</th>
<th>1.06</th>
<th>0.09</th>
<th>0.08</th>
<th>0.33</th>
<th>1:10 h a 37ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.02</td>
<td>0.66</td>
<td>0.56</td>
<td>1.48</td>
<td>0.57</td>
<td>0.92</td>
<td>0.10 0.32</td>
</tr>
<tr>
<td>1.00</td>
<td>0.42</td>
<td>0.09</td>
<td>1.43</td>
<td>0.25</td>
<td>0.12</td>
<td>0.07 0.07</td>
</tr>
</tbody>
</table>

Figura sup 13. Organització de la plaça per test ELISA

<table>
<thead>
<tr>
<th><<</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.54</td>
<td>0.07</td>
<td>0.09</td>
<td>0.48</td>
<td>1.33</td>
<td>1.48</td>
<td>0.17</td>
<td>0.09</td>
</tr>
<tr>
<td>B</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td>C</td>
<td>0.06</td>
<td>0.33</td>
<td>0.42</td>
<td>1.76</td>
<td>0.25</td>
<td>0.28</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.07</td>
<td>0.07</td>
<td>0.12</td>
<td>0.17</td>
<td>0.07</td>
<td>0.90</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.09</td>
<td>0.11</td>
<td>0.22</td>
<td>0.08</td>
<td>0.07</td>
<td>0.36</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.08</td>
<td>1.63</td>
<td>1.19</td>
<td>0.56</td>
<td>0.30</td>
<td>0.17</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.07</td>
<td>0.09</td>
<td>0.66</td>
<td>0.57</td>
<td>0.92</td>
<td>0.10</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.20</td>
<td>0.42</td>
<td>0.09</td>
<td>1.43</td>
<td>0.25</td>
<td>0.12</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>

Figura sup 14. Resultats obtinguts amb l' espectofotòmetre a 655nm

Tiempo incubación Galectina murina: 2.00 h 37°C
Tiempo bloqueig: 2.00 h 37°C
Tiempo d'incubación sobrenadant: o/n a 4°C 1:10 h a 37°C
Tiempo incubación mouse-HRP: 1.05 h 37°C
Tiempo revelat: 20 min Temp ambient

Figura sup 15. Temps de reacció del test ELISA
2.3. Primer estudi funcional d’anticossos

En aquest apartat es poden observar les repliques que es van dur a terme en el primer assaig funcional dels anticossos.

Figura sup 14. A l’esquerre dotplot on es selecciona la població de linfòcits T vius tractats amb medi RPMI. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Figura sup 15. A l’esquerre dotplot on es selecciona la població de linfòcits T vius tractats amb medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.
Figura sup 16. A l’esquerra dotplot on es selecciona la població de linfòcits T vius tractats amb anticossos. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Figura sup 17. A l’esquerra dotplot on es selecciona la població de linfòcits T vius tractats amb Galectina-1 humana i medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Figura sup 18. A l’esquerra dotplot on es selecciona la població de linfòcits T vius tractats anticossos i Gal-1 humana. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.
2.4. Segon estudi funcional d’anticossos

![Diagrama de dotplot amb dos gràfics](image1)

Figura sup 19. A l’esquerra dotplot on es selecciona la població de limfòcits T vius tractats amb medi RMPI. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

![Diagrama de dotplot amb dos gràfics](image2)

Figura sup 20. A l’esquerra dotplot on es selecciona la població de limfòcits T vius tractats amb medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

![Diagrama de dotplot amb dos gràfics](image3)

Figura sup 21. A l’esquerra dotplot on es selecciona la població de limfòcits T vius tractats amb anticossos. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.
Figura sup 22. A l’esquerra dotplot on es selecciona la població de linfòcits T vius tractats amb Galectina-1 humana i medi HT. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Figura sup 23. A l’esquerra dotplot on es selecciona la població de linfòcits T vius tractats amb anticossos i Galectina-1 murina. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.

Figura sup 24. A l’esquerra dotplot on es selecciona la població de linfòcits T vius tractats amb anticossos i Galectina-1 humana. A la dreta, taula on es mostren les poblacions seleccionades i el percentatge de cèl·lules vives.