CuO$_x$ functionalized silicon photoanodes for efficient photoelectrochemical water splitting devices

Yuanyuan Shi
Master Project in Nanoscience, Materials and Processes: Chemical Technology at the Frontier Master Programme, 2014-2015
e-mail: yuanyuan.shi@estudiants.urv.cat

Supervisor: Antoni Llobet
Institute of Chemical Research of Catalonia (ICIQ). Universitat Rovira i Virgili, E-43007 Tarragona, Spain.

Abstract: Photoelectrochemical (PEC) water splitting using solar light to produce clean fuels (hydrogen) is a promising renewable source to fulfill the raising global energy demands and overcome environmental problems. This technology is attractive because it can provide equal or even more energy at a lower cost than other kinds of solar cells, and it solves the problems of sunlight intermittence and location dependency, as the energy can be stored and transported in the form of chemical bonds. In this field, the development of active, stable and cost-effective photoelectrocatalysts or photoelectrodes is essential to ensure the good function of water splitting cells. Here a highly active CuO$_x$/Cu protected silicon photoanode has been prepared, with onset potential at 0.51 V vs. SCE in 0.2 M borate buffer (pH 9). The electrode is stable showing a constant current density of 0.8 mA/cm2 at 0.59 V vs. SCE for 1 hour under illumination of simulated 1-sun. These findings may have important implications in the advance of this technology, as they provide a cost-effective solution that shows excellent performance.

Introduction

PEC cells use a built-in potential generated at a semiconductor-liquid junction under sunlight illumination, which can drive uphill chemical reactions. One of the most desired chemical reactions to drive using this method is the splitting of water because it produces hydrogen fuel in a clean manner [1]. In such device, a semiconductor electrode is immersed in an aqueous solution and illuminated to split water into hydrogen and oxygen directly at the semiconductor surface, producing chemical fuels that can be stored and transported [2] (Figure 1). Silicon and III-V semiconductors are excellent light absorbers with high carrier mobilities, allowing the possibility to split water under light [3-4]. Silicon is preferred due to its low price but, unfortunately, silicon is only able to produce modest current densities in the scale of µA/cm2 that decay very fast (some minutes) due to premature corrosion [5], and the III-V semiconductors are also extremely prone to photoanodic corrosion [6-8].

For these reasons, passivating the silicon surface with a protecting layer of stable material that suppresses photocorrosion has become one of the main challenges of this technology. To date, the cheapest metal based coating with highly active performance has been achieved using nickel based coating. In 2013, M. J. Kenney et al. [9] evaporated a 2 nm Ni layer on the native oxide of a silicon wafer, leading to Ni/SiO$_2$/nSi photoanodes with extraordinary activity and stability (up to 80 hours in a mixed lithium borate-potassium borate electrolyte). And very recently, Lewis’ group reported the NiO$_x$ coated np$^-$-Si and n-Si photoanodes able to split water for over 50 days in 1 M KOH (aq) [10]. The NiO$_x$ layer not only protected the silicon from corrosion but also acted as water oxidation catalyst. Another very efficient coating is TiO$_2$ based coating. Chen et al. [11] and Hu. et al. [4] reported corrosion-resistant and high efficient photoanodes based on silicon or other semiconductors. In these photoanodes, TiO$_2$ coatings grown by atomic layer deposition (ALD) can prevent corrosion, have electronic defects that promote hole conduction, and are sufficiently transparent to reach the light-limited performance of protected
Figure 1. Scheme of the PEC cell developed in this work. The cell is built of a Cu/CuO protected n-Si photoanode connected to a metal counter electrode through a potentiostat. When the sunlight illuminates the surface of this photoanode, it induces charge separation. The generated holes migrate to the surface and are used to produce O₂ from water. The electrons in the conduction band move to the counter electrode to reduce water and produce hydrogen.

On the other hand, the use of water oxidation catalyst (WOC) on the surface of the semiconductor can improve the performance of the photoanodes because they help the charge separation and speed up the oxygen evolution reaction that takes place on the surface. Most of the reported examples use noble metals such as palladium [12] platinum [13], iridium [11] or ruthenium [3, 14] oxides but also other earth-abundant metallic oxides like NiOₓ [9-10]. Molecular copper as well as copper oxides have recently been shown to be active in the electrocatalytic water oxidation reaction but their uses are still at their early stage [15-17]. Yu et. al. [18] reported a facile oxidative electrodeposition method to prepare highly active and stable (over 10 hours in 0.2 M borate buffer pH 9) copper oxide catalyst by electrodeposition of Cu²⁺ from borate buffer solution under near neutral conditions. More recently, Du et al. [19] reported that formation of a compact film of CuOₓ on Cu surface can prevent anodic corrosion and result in sustained catalytic water oxidation. A rapid method for the preparation of highly photoactive CuO thin films on conductive glass was reported [20], based on very simple reductive electrodeposition and post annealing steps, however, in this case the copper oxide was not used as water oxidation catalyst, but as a photocathode. Compared to other metals based oxides, copper is especially interesting due to its earth-abundance and low cost. With these precedents, the aim of this work is to explore the use of active CuOₓ films on n-Si based photoanodes and study its photovoltaic performance. And also, trying to enhance the performance of nickel based silicon photoanodes [9] using CuOₓ films.

First of all, the activity of the CuOₓ will be optimized under electrocatalytic conditions by depositing the films on conductive substrates using three methodologies including electrodeposition techniques as described in the literature [18, 20-22] as well as physical vapor deposition (PVD) techniques. In a second step, the optimum film depositing conditions will be used to modify the n-Si semiconducting material. Finally, the new produced photoelectrodes will be tested for the...
overall water splitting reaction in a PEC configuration according to Figure 1. In this configuration, when the sunlight illuminates the surface of the CuO\(_x\)/Cu based silicon photoanode, it induces charge separation. The generated holes migrate to the interface and are used to produce O\(_2\) from water. And the electrons in the conduction band move to the counter electrode to reduce water and produce hydrogen.

Experimental section

General considerations

All reagents were purchased from Aldrich unless otherwise stated.

The Fluorine doped Tin Oxide (FTO)-coated glass was purchased from Xop Fisica (thickness, 2.3-3.0 mm; visible transmittance, 80-81.5%; resistance, 6-9 \(\Omega/cm^2 \)). Before the deposition and characterization tests, the FTO-coated glass was ultrasonically cleaned in deionized water, propanol, deionized water, acetone and then ethanol for 10 min each.

Phosphorous-doped [100] n-type silicon wafers (0.3-0.5 ohm-cm) were purchased from ProLog. Ohmic contact of 20 nm titanium was deposited to the backside of the wafers by e-beam evaporation (PVD75 Kurt J. Lesker). Before any deposition, the Si wafers were washed with acetone, ethanol, deionized water in ultrasonic bath, each for 10 minutes.

Electrochemical experiments for the preparation of the CuO\(_x\) films were performed in a standard three-electrode configuration cell with Ag/AgCl or SCE (saturated KCl) reference electrode and Pt wire as the counter electrode at ambient temperature controlled by a CHI 660D potentiostat (CH Instruments, Inc.).

UV-Vis characterization was performed on Cary 50 (Varian) UV-Vis spectrophotometer in air condition. Before all the analysis, the FTO electrodes were cleaned.

Transmission electron microscopy (TEM) characterization was performed using a JEOLETEM (model 1011).

For the photocatalytic reactions, the illumination was provided by a 150 W Xe Arc Lamp (LS-150, ABET technology), equipped with a UV-light filter (\(\lambda < 400 \) nm) and calibrated to 1 sun (100 mW/cm\(^2\)) using a calibrated silicon photodiode at 25 °C.

The 0.2 M borate buffer solution (pH 9) was obtained by mixing a 0.05 M Na\(_2\)B\(_4\)O\(_7\) solution and a 0.2 M H\(_2\)BO\(_3\) solution in a ratio of 8:2 (v/v). All pH values were measured with a HI 4222 pH-meter (Hanna Instruments) using a calibrated Crison 5029 electrode (Crison Instruments). The electrode of the pH-meter was calibrated in three kind of standard solutions (pH 4.01, 7.00, 9.21) subsequently before the measurements.

Fabrication of CuO\(_x\)/FTO electrodes:

Oxidative electrodeposition: the CuO\(_x\) film was prepared by controlled potential electrolysis of a freshly prepared 0.2 M borate buffer solution (pH 9) containing 1 mM Cu(NO\(_3\))\(_2\) in a single-compartment three-electrode cell at ambient conditions at 1.1 V vs. Ag/AgCl for 40 min [18]. The resulting film was rinsed with deionized water to remove Cu\(^{2+}\) salts and dried with N\(_2\) flow.

Reductive electrodeposition: the CuO\(_x\)/FTO electrodes were prepared following a modified procedure from the literature [20]. The FTO electrodes were immersed in a three-electrode, one compartment electrochemical cell filled with 0.025 M Cu(NO\(_3\))\(_2\) aqueous solution. A controlled potential of -0.5 V vs. SCE was applied for 56 s when the electrodeposition of Cu\(_2\)O and Cu\(^0\) took place. Then, the electrodes were taken out, rinsed using deionized water and dried with N\(_2\) flow. Finally, a cyclic voltammetry (CV) was performed from 0 V to 1.6 V vs. SCE in 0.2 M borate buffer solution at pH 9. An irreversible oxidation wave was found, indicating the formation of CuO\(_x\) on the surface.

Sputtering: 5 nm or 10 nm Cu\(^0\) film was deposited on FTO coated glass by sputtering (ATC Orion 8-HV, AJA International) at 100 W, with a deposition rate of 1.6 Å/s for 40 s and 80 s, respectively. Then the Cu/FTO electrodes were tested by sweeping to positive potential from 0 to 1.6 V vs. SCE in 0.2 M borate buffer solution (pH 9) to form a layer of CuO\(_x\).
electrodes:

Sputtering: copper films (5 and 10 nm) were deposited on n-Si wafers by sputtering (ATC Orion 8-HV, AJA International) at a deposition rate of ~1.6 Å/s. The Cu films on n-Si were deposited at the same time of the Cu/FTO (see above). Copper tape was used to contact the electrodes for electrochemical experiments.

Photoelectrochemical water oxidation catalysis with n-Si based photoanodes:

One compartment cell – teflon box: In this configuration, electrodes were analyzed in a one compartment cell with three electrodes. The n-Si based photoanodes were used as working electrodes. A Hg/Hg₂SO₄ (saturated K₂SO₄) reference electrode was used together with a Pt wire as counter electrode. An auto-shutter controlled by the custom made shutter_Ard program was used to hinder the light for the dark or chopped characterization. The PEC properties of the Cu/nSi based electrodes were tested in 0.2 M borate buffer solution (pH 9).

Two compartments cell: In this setup, the n-Si based photoanodes were used as working electrodes. A Ag/AgCl reference electrode and a Pt mesh as counter electrode were used in 0.2 M borate buffer solution (pH 9). An oxygen sensitive OXNP15121 Clark electrode from Unisense was used in air condition to calculate the Faradaic efficiency of the photoanodes.

Results and discussion

Deposition of CuOₓ on FTO: electrocatalytic water oxidation

Many methodologies are available to deposit materials such as copper on semiconducting or conductive substrates, including PVD, molecular beam epitaxy (MBE), chemical vapor deposition (CVD), and electrodeposition [23]. In this study, we used three different techniques in order to find the best method that can form CuOₓ films on n-Si electrodes. We started by studying the deposition of CuOₓ by electrodeposition on FTO coated glass substrates, adapting two methods that are described in the literature (methods 1 and 2 in Table 1). In method 1, a positive potential was applied to a 0.2 M borate buffering electrolyte (pH 9) containing 1 mM Cu(NO₃)₂, maintaining the equilibrium between dissolution and precipitation of metal ion to electrodeposit a Cu-Bₓ film (mainly CuO, where “Bₓ” stands for borate) on the FTO side of the glass [18]. In contrast, a negative potential was applied in method 2 to produce Cu₂O (not stable) and Cu₀ from Cu²⁺, after this, positive potentials were applied to introduce an irreversible reaction from Cu₂O and Cu₀ to CuO.

The third method that we used was a type of PVD technique, that is, sputtering of a Cu target to form a very thin layer of Cu on FTO coated glass. Two different thicknesses of copper (5 and 10 nm) were produced in order to study and compare the catalytic performance of the resulting electrodes. In Figure 2, the surface of analogous 5 nm and 10 nm Cu films, deposited on a copper TEM grid with a thin coating of carbon, can be observed clearly at large (a-b) and small (c-d) scale, respectively. We can observe that the surface of the Cu films is not homogenous and the 5 nm Cu film seems to be rougher than the 10 nm Cu film. The results are reasonable since the thickness is too

Table 1. Summary of methods used in this work to deposit CuOₓ films on semiconducting or conductive substrates. All potentials are given vs. the SCE electrode.

<table>
<thead>
<tr>
<th>Method</th>
<th>Copper Precursor</th>
<th>Description</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu(NO₃)₂</td>
<td>Oxidative electrodeposition (1.055 V vs. SCE, 40 min)</td>
<td>[18]</td>
</tr>
<tr>
<td>2</td>
<td>Cu(NO₃)₂</td>
<td>a) Reductive electrodeposition (-0.5 V vs. SCE, 56 seconds)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) CV from 0 V to 1.6 V vs. SCE</td>
<td>[20]</td>
</tr>
<tr>
<td>3</td>
<td>Metallic copper</td>
<td>a) Sputtering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) CV from 0 V to 1.6 V vs. SCE</td>
<td>this work</td>
</tr>
</tbody>
</table>
thin, however, rougher surface may provide larger area for the catalytic process. The resulting Cu/FTO electrodes were immersed in a 0.2 M borate buffer solution (pH 9) and a positive potential was applied to form a layer of CuO\textsubscript{x} on the surface of the electrode (Method 3 in Table 1).

As shown in Figure 3(a), the onset potential for the water oxidation reaction of the CuO\textsubscript{x}/FTO electrodes obtained with the three different methods is very similar and has a shift of ~200 mV compared to the bare FTO. In terms of current density, methods 1 and 3 are better than method 2 (compare blue and red traces with green traces in Figure 2a).

The stability of the CuO\textsubscript{x}/FTO electrodes was assessed by means of successive CV experiments as well as controlled potential electrolysis. The electrodeposited CuO\textsubscript{x}/FTO (methods 1 and 2) decays slightly after each CV scan until it reaches a constant level. On the other hand, the CuO\textsubscript{x}/Cu/FTO made from sputtering is stable from the beginning.

Figure 3(b) shows the results of controlled potential electrolysis using CuO\textsubscript{x}/FTO electrodes in 0.2M borate buffer (pH 9) at 1.1 V vs. SCE (641 mV overpotential). The current density traces, associated with the water oxidation catalysis, are very stable for all the samples, but the current density of the 10 nm CuO\textsubscript{x}/Cu/FTO is much higher than both the electrodeposited CuO\textsubscript{x}/FTO at a similar potential. In summary, the results in Figure 3 prove that the CuO\textsubscript{x}/Cu/FTO electrodes produced by the sputtering method show the best electrochemical performance.

Another important aspect of the CuO\textsubscript{x} films if we want to use them for PEC applications is their transparency, because we need the light to go through the CuO\textsubscript{x} film in order to reach the semiconductor (Figure 1). In order to know better if the sputtered Cu can be useful for the n-Si photoanodes, we analyzed the CuO\textsubscript{x}/Cu/FTO samples by UV-Vis spectroscopy (Figure 4). We did the analysis before and after the controlled
Figure 3. Electrochemical water oxidation performance of CuOx/FTO electrodes. (a) CVs of bare FTO (brown), oxidative electrodeposited CuOx/FTO (red), reductive electrodeposited CuOx/FTO (green) and 10 nm sputtered CuOx/Cu/FTO (blue) in 0.2 M borate buffer solution (pH 9). All the CV scans were obtained without iR compensation by using an SCE reference electrode, a Pt counter electrode, and at a scan rate of 100 mV/s. (b) Current density traces obtained without iR compensation by controlled-potential electrolysis (CPE) of oxidative electrodeposited CuOx/FTO (red), reductive electrodeposited CuOx/FTO (green) and 10 nm Sputtering CuOx/Cu/FTO (blue) in 0.2 M borate buffer solution (pH 9) at about 1.1 V vs. SCE.

Figure 4. Transparency of the Cu film. UV-Vis analysis of 5 nm (green) and 10 nm (blue) CuOx/Cu/FTO before (solid curves) and after (dashed curves) the electrochemical tests. The signal of the bare FTO substrate is also shown as reference.
Figure 5. Activation of the Cu/nSi photoanodes. (a) CV scans of 10 nm Cu/SiO$_2$/nSi/20 nm Ti in the dark or under 1-sun illumination. All the CVs were obtained with iR compensation using a Pt counter electrode, a Hg/Hg$_2$SO$_4$ reference electrode at a scan rate of 100 mV/s in 0.2 M borate buffer solution (pH 9). (b) A scheme illustrating the activation of the Cu/SiO$_2$/nSi/Ti photoanodes by producing a layer of CuO$_x$ at pH 9 under PEC conditions.

Interestingly, the Cu/SiO$_2$/nSi/20 nm Ti electrodes are not active at the initial CV scan in 0.2 M borate buffer solution (pH 9). As it can be observed in Figure 5(a), the current density of 10 nm Cu/SiO$_2$/nSi/20 nm Ti at the first CV scan is very similar between light and dark conditions in pH 9 (compare red and black curves). However, these electrodes are activated after several CV scans at larger potential range and chopped linear sweep voltammetry (LSV). A significant shift of the onset potential for the water oxidation catalysis (from ~0.72 V to ~0.51 V vs. SCE) and obvious increase of the current density can be obtained after this activation process. The activated electrodes are very stable as demonstrated by the CVs before and after 1 hour of bulk electrolysis at 0.8 V vs. SCE (compare green and blue curves in Figure 5). The mechanism of the activation process of this kind of Cu/nSi photoanodes is complex, involving both soluble and insoluble products and multiple oxidation states with Cu1, CuII, CuIII, and/or CuIV [24-25]. A schematic representation of this activation process is shown in Figure 5(b). Further studies are necessary to fully understand this process.

Figure 6 compares the performance of the CuO$_x$/Cu/SiO$_2$/nSi/Ti photoanodes with the CuO$_x$/Cu/FTO electrodes at pH 9. As a reference, a typical CV scan of the bare FTO electrode in pH 9 is also shown (black curve). The CuO$_x$/Cu film on FTO shifts the onset potential ~270 mV compared with the bare FTO (from 1.22 V to 0.95 V vs. SCE). Both the FTO and Cu/FTO are not photoactive since these electrodes show the same performance under light and dark conditions in pH 9 solution (not shown). However, when the CuO$_x$/Cu film is deposited to a good light absorber such as n-Si photoanode, the performance of the resulting electrode shows totally different behavior with and without illumination (solid and dashed brown and blue curves in Figure 6). The CuO$_x$/Cu/SiO$_2$/nSi/Ti photoanodes show a shift of about 440 mV of the onset potential compared to that of the CuO$_x$/Cu/FTO (from 0.95 V to 0.51 V vs. SCE). This 440 mV difference is
induced by the illumination of simulated 1-sun, which makes it possible to use sunlight and save energy.

Encouraged by the high performance of the CuOx/Cu/nSi photoanode and considering that the stability of the electrodes is critical for real water splitting applications, we performed controlled potential electrolysis for a period of time. Figure 7(a) shows that both the 5 nm and 10 nm CuOx/Cu/SiO2/nSi/20 nm Ti photoelectrodes are stable for at least 40 min under controlled potential electrolysis at 0.8 V vs. SCE in pH 9. For the 10 nm Cu/nSi photoanodes, it seems to be more stable (1 hour) than the one with 5 nm Cu. The current density traces of these two electrodes were both obtained without iR compensation, if the resistance of the system is considered, the really applied potentials for collecting 0.8 mA/cm² and 0.6 mA/cm² current densities on 10 nm and 5 nm Cu/nSi photoanodes are 0.59 V and 0.64 V vs. SCE, that accounts for an overpotential for the water oxidation half reaction of 131 mV and 181 mV at pH 9, respectively.

In order to prove that the current observed in the controlled potential electrolysis is due to the water oxidation reaction, an experiment using an oxygen gas sensor was performed. Figure 7(b) shows the O2 gas evolution versus time profile produced by a 5 nm Cu/SiO2/nSi/20 nm Ti photoelectrode in 0.2 M borate buffer solution (pH 9), under simulated 1 sun illumination while operating at a constant potential of 1.16 V vs. SCE for ~1 hour in a two-compartment glass cell. A Faradaic efficiency of 97% was obtained considering a theoretical volume of gas (red dashed line in Figure 7(b)), calculated from the total charge passed, according to the stoichiometry of the water oxidation half reaction H2O – 4e⁻ → 2O2 + 4H⁺ and real volume of O2 gas determined experimentally (red solid line in Figure 7(a)).
Figure 7. Stability of the CuOx/Cu/nSi photoanodes. (a) Current density versus time data under constant potential of 0.8 V vs. SCE of a 5 nm (red) and 10 nm (blue) CuOx/Cu/nSi anode in 0.2 M borate buffer (pH 9) under constant illumination. (b) Oxygen evolution at a CuOx/Cu/nSi photoanode operated in 0.2 M borate buffer (pH 9) at 1.16 V vs. SCE. Both (a) and (b) were obtained without iR compensation, illuminated by a simulated 1-sun light and using a Pt mesh as counter electrode. A one-compartment teflon box and SCE reference electrode were used for tracing the current density (a) and a two-compartment glass cell and Ag/AgCl reference electrode were used for the oxygen detection experiment (b).

Conclusions

In conclusion, we studied different methods to deposit CuOx films to protect and activate the n-Si photoanodes for the photoelectrochemical water oxidation reaction. We proved that the PVD processed Cu/SiO2/nSi/Ti samples show highly active (onset potential of 0.51 V vs. SCE, with an overpotential of 51 mV) and stable performance under illumination of simulated 1-sun in 0.2 M borate buffer at pH 9 (constant current density of 0.8 mA/cm² at 0.59 V vs. SCE for 1 hour, with an overpotential of 131 mV), with faradaic efficiency close to 100%. This methodology helps ~440 mV potentials to be saved by sunlight using a cheap and earth-abundant copper based catalyst in pH 9 solution. This is the first study that uses CuOx as catalyst in a semiconductor surface to afford highly active and stable photoanodes for the water splitting reaction. This study will be a promising work to provide a solving method for the increasing global energy demand and decreasing fossil fuel reserve.

Acknowledgments

This work was supported by the start-up funding from Soochow University (China), the project grant CTQ2013-49075-R from Spanish MINECO and the project grant 2014SGR 915 from Generalitat de Catalunya-AGAUR. I also want to acknowledge Antoni Llobet, Carolina Suriñach, Mario Lanza and all the members in the lab for their advice, scientific guidance and personal recommendations along the master course.

References

(National Association of Corrosion Engineers, Houston, TX, ed. 2, 1974).

