Role of resident microglia in lymphoid neogenesis after rodent cerebral ischemia

BACHELOR’S THESIS

Degree in Biotechnology

Carla Peiró Moreno
Tarragona, 2019
Table of contents

- Theoretical framework
 - Chronic inflammation
 - Lymphoid neogenesis
 - Ischemic stroke

- Materials and methods
 - Cx3cr1$^{\text{Cre/ERT2}}$-FiDTR mice

- Results and discussion
 - Microglia depletion inhibits lymphocytic infiltration
 - Effects on molecular pathways
 - Evaluation of Cx3cr1.FiDTR mouse model

- Conclusion
Chronic inflammation

Sustained inflammatory processes as a cause of chronification of diseases

Study of chronification mechanisms
Ectopic lymphoid-like structures (ELS)

Structure:
B-cell core
surrounded by T cells

Functions:
Local production of auto-antibodies
Maintenance of inflammatory response

Lymphoid neogenesis: Process of formation of ELS
Ischemic stroke

- Activation of resident microglia
- Recruitment of peripheral immune cells
- ELS
- 14 days post-stroke
- Cognitive decline
Previous experiments

Overexpression of cytokines in WT mice (d14 after stroke)
Ischemic stroke

Activation of resident microglia

Recruitment of peripheral immune cells

14 days post-stroke

ELS

Cognitive decline
Cx3cr1Cre/ERT2-FiDTR mice

Cx3cr1-ERT2 vector: Expresses Cre-ERT2 in the presence of Tamoxifen

R21-iDTR vector: Expresses diptheria toxin receptor (DTR) once Cre eliminates the STOP codon
Cx3cr1\textsuperscript{Cre\textsubscript{ERT2}}-FiDTR mice

Expression analyses
- Pax5, Cd3e, Lta, Ltb, Cxcl13, Cxcr5, Cxcl12, and Ccl19 genes
- Ccr2, Ly6c, and Iba-1 genes

Control
- 5 WT mice
- 2 control Cx3cr1.FiDTR mice
- 2 control Cx3cr1.FiDTR mice

Test sample
- 4 Microglia-depleted Cx3cr1.FiDTR mice
- 4 Microglia-depleted Cx3cr1.FiDTR mice

Histopathology
- Control
 - 5 WT mice
- Test sample
 - 3 Microglia-depleted Cx3cr1.FiDTR mice
Expression analyses

<table>
<thead>
<tr>
<th>Control</th>
<th>Test sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 WT mice</td>
<td>4 Microglia-depleted Cx3cr1.FiDTR mice</td>
</tr>
<tr>
<td>2 control Cx3cr1.FiDTR mice</td>
<td>2 control Cx3cr1.FiDTR mice</td>
</tr>
</tbody>
</table>

Histopathology

<table>
<thead>
<tr>
<th>Control</th>
<th>Test sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 WT mice</td>
<td>3 Microglia-depleted Cx3cr1.FiDTR mice</td>
</tr>
</tbody>
</table>
Microglia depletion inhibits lymphocytic infiltration

- WT (day 14)
- Microglia-depleted (day 14)

Infarct volume: 18%
Infarct volume: 25%

B220 (B-lymphocytes) Iba-1 (microglia and macrophages) DAPI
Microglia depletion inhibits lymphocyte infiltration

WT (day 14) Microglia-depleted (day 14)

Infarct volume: 18% Infarct volume: 25%

B220 (B-lymphocytes) Iba-1 (microglia and macrophages) DAPI
Effects on molecular pathways

Lymphotoxin

- LTa
- LTb

Lymphoid chemokines and receptors

- CXCL13
- CXCR5
- CXCL12
- CCL19

Myeloid markers

- Ly6C
- CCR2
- Iba-1
Effects on molecular pathways

- Not a clear overexpression of \(Lta \) after stroke
- \(Ltb \) shows a tendency towards a decreased expression

\(LTb \) might be the limiting component of the \(LT\alpha_1\beta_2 \) complex
Effects on molecular pathways

↓ Lymphoid chemokines → Lymphocyte infiltration → ELS
Effects on molecular pathways

Microglia depletion does not affect to other myeloid populations (infiltrating monocytes and macrophages)
Evaluation of Cx3cr1.FiDTR mouse model

- No differences in contralateral hemispheres (no stroke)
- No differences between WT and control in ipsilateral
Evaluation of Cx3cr1.FiDTR mouse model

- No differences in contralateral hemispheres (no stroke)
- No differences between WT and control in ipsilateral
Evaluation of Cx3cr1.FiDTR mouse model

- No differences in contralateral hemispheres (no stroke)
- No differences between WT and control in ipsilateral
Evaluation of Cx3cr1.FiDTR mouse model

- No differences in contralateral hemispheres (no stroke)
- No differences between WT and control in ipsilateral
- Iba-1+ cells → Mostly infiltrating macrophages
Conclusion

- Cx3cr1.FiDTR mice is a solid model to study microglia functions after stroke
- Microglia depletion inhibits lymphocytic infiltration and ELS formation
- Microglia is involved on Cxcl13, Cxcl12, and Ccl19 overexpression after stroke in mice

Resident microglia has a crucial role in lymphoid neogenesis after rodent cerebral ischemia
Thank you for your attention